- 相关推荐
初二数学期中考试试卷及答案
在日常学习和工作中,我们最少不了的就是试卷了,试卷是纸张答题,在纸张有考试组织者检测考试者学习情况而设定在规定时间内完成的试卷。你所见过的试卷是什么样的呢?下面是小编为大家收集的初二数学期中考试试卷及答案,欢迎大家借鉴与参考,希望对大家有所帮助。

初二数学期中考试试卷及答案 1
一、填空题(每小题2分,共24分)
1.16的平方根是±4.
【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.
【解答】解:∵(±4)2=16,
∴16的平方根是±4.
故答案为:±4.
【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
2.用字母表示的实数m﹣2有算术平方根,则m取值范围是m≥2.
【分析】根据用字母表示的实数m﹣2有算术平方根,可得m﹣2≥0,据此求出m取值范围即可.
【解答】解:∵用字母表示的实数m﹣2有算术平方根,
∴m﹣2≥0,
解得m≥2,
即m取值范围是m≥2.
故答案为:m≥2.
【点评】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.
3.点P(﹣4,1)关于x轴对称的点的坐标是(﹣4,﹣1).
【分析】根据点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y)求解.
【解答】解:点P(﹣4,1)关于x轴对称的点的坐标为(﹣4,﹣1).
故答案为(﹣4,﹣1).
【点评】本题考查了关于x轴、y轴对称的点的坐标:点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y);点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).
4.用四舍五入法把9.456精确到百分位,得到的近似值是9.46.
【分析】把千分位上的数字6进行四舍五入即可.
【解答】解:9.456≈9.46(精确到百分位).
故答案为9.46.
【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.
5.如图,△ABC≌△DEF,则DF=4.
【分析】根据全等三角形的对应边相等解答即可.
【解答】解:∵△ABC≌△DEF,
∴DF=AC=4,
故答案为:4.
【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.
6.已知函数是正比例函数,且图象在第二、四象限内,则m的值是﹣2.
【分析】当函数的图象经过二、四象限可得其比例系数为负数,据此求解.
【解答】解:∵函数是正比例函数,
∴m2﹣3=1且m+1≠0,
解得m=±2.
又∵函数图象经过第二、四象限,
∴m+1<0,
解得m<﹣1,
∴m=﹣2.
故答案是:﹣2.
【点评】此题主要考查了正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.
7.已知a<
【分析】求出的范围:3<<4,即可求出ab的值,代入求出即可.
【解答】解:∵3<<4,a<
∵ab是整数,
∴a=3,b=4,
∴a+b=3+4=7,
故答案为:7.
【点评】本题考查了对无理数的大小比较的应用,解此题的关键是求出的范围.
8.已知函数y=kx+b的图象如图,则关于x的不等式kx+b>0的解集是x<2.
【分析】直接利用函数图象,结合式kx+b>0时,则y的值>0时对应x的取值范围,进而得出答案.
【解答】解:如图所示:
关于x的不等式kx+b>0的解集是:x<2.
故答案为:x<2.
【点评】此题主要考查了函数与一元不等式,正确利用数形结合是解题关键.
9.如图,长为12cm的弹性皮筋直放置在x轴上,固定两端A和B,然后把中点C向上拉升8cm至D点,则弹性皮筋被拉长了8cm.
【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.
【解答】解:根据题意得:AD=BD,AC=BC,AB⊥CD,
则在Rt△ACD中,AC=AB=6cm,CD=8cm;
根据勾股定理,得:AD===10(cm);
所以AD+BD﹣AB=2AD﹣AB=20﹣12=8(cm);
即橡皮筋被拉长了8cm;
故答案为:8cm.
【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用;熟练掌握等腰三角形的性质,由勾股定理求出AD是解决问题的关键.
10.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P,若四边形ABCD的面积是9,则DP的长是3.
【分析】作DE⊥BC,交BC延长线于E,如图,则四边形BEDP为矩形,再利用等角的余角相等得到∠ADP=∠CDE,则可利用“AAS”证明△ADP≌△CDE,得到DP=DE,S△ADP=S△CDE,所以四边形BEDP为正方形,S四边形ABCD=S矩形BEDP,根据正方形的面积公式得到DP2=9,易得DP=3.
【解答】解:作DE⊥BC,交BC延长线于E,如图,
∵DP⊥AB,ABC=90°,
∴四边形BEDP为矩形,
∴∠PDE=90°,即∠CDE+∠PDC=90°,
∵∠ADC=90°,即∠ADP+∠PDC=90°,
∴∠ADP=∠CDE,
在△ADP和△CDE中
,
∴△ADP≌△CDE,
∴DP=DE,S△ADP=S△CDE,
∴四边形BEDP为正方形,S四边形ABCD=S矩形BEDP,
∴DP2=9,
∴DP=3.
故答案为3.
【点评】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.也考查了正方形的性质和勾股定理.本题的关键的作辅助线构造两个全等的三角形.
11.如图,已知点P为∠AOB的角平分线上的一定点,D是射线OA上的一定点,E是OB上的某一点,满足PE=PD,则∠OEP与∠ODP的数量关系是∠OEP=∠ODP或∠OEP+∠ODP=180°.
【分析】以O为圆心,以OD为半径作弧,交OB于E2,连接PE2,根据SAS证△E2OP≌△DOP,推出E2P=PD,得出此时点E2符合条件,此时∠OE2P=∠ODP;以P为圆心,以PD为半径作弧,交OB于另一点E1,连接PE1,根据等腰三角形性质推出∠PE2E1=∠PE1E2,求出∠OE1P+∠ODP=180°即可.
【解答】解:∠OEP=∠ODP或∠OEP+∠ODP=180°,理由如下:
以O为圆心,以OD为半径作弧,交OB于E2,连接PE2,如图所示:
∵在△E2OP和△DOP中,
∴△E2OP≌△DOP(SAS),
∴E2P=PD,
即此时点E2符合条件,此时∠OE2P=∠ODP;
以P为圆心,以PD为半径作弧,交OB于另一点E1,连接PE1,
则此点E1也符合条件PD=PE1,
∵PE2=PE1=PD,
∴∠PE2E1=∠PE1E2,
∵∠OE1P+∠E2E1P=180°,
∵∠OE2P=∠ODP,
∴∠OE1P+∠ODP=180°,
∴∠OEP与∠ODP所有可能的数量关系是:∠OEP=∠ODP或∠OEP+∠ODP=180°,
故答案为:∠OEP=∠ODP或∠OEP+∠ODP=180°.
【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质和判定等知识点,主要考查学生的猜想能力和分析问题和解决问题的能力,题目具有一定的代表性,是一道比较好的题目.
12.如图,直线y=x+2于x、y轴分别交于点A、B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C移动的距离为+1.
【分析】先求出直线y=x+2与y轴交点B的坐标为(0,2),再由C在线段OB的垂直平分线上,得出C点纵坐标为1,将y=1代入y=x+2,求得x=﹣1,即可得到C′的坐标为(﹣1,1),进而得出点C移动的距离.
【解答】解:∵直线y=x+2与y轴交于B点,
∴x=0时,
得y=2,
∴B(0,2).
∵以OB为边在y轴右侧作等边三角形OBC,
∴C在线段OB的垂直平分线上,
∴C点纵坐标为1.
将y=1代入y=x+2,得1=x+2,
解得x=﹣1.
故C点到y轴的距离为:,故点C移动的'距离为:+1.
故答案为:+1.
【点评】本题考查了函数图象上点的坐标特征,等边三角形的性质,坐标与图形变化﹣平移,得出C点纵坐标为1是解题的关键.
二、选择题(每小题3分,共24分)
13.在平面直角坐标系中,点P(﹣2,1)在()
A.第一象限B.第二象限C.第三象限D.第四象限
【分析】点P的横坐标为负,在y轴的左侧,纵坐标为正,在x轴上方,那么可得此点所在的象限.
【解答】解:∵点P的横坐标为负,纵坐标为正,
∴点P(﹣2,1)在第二象限,
故选B.
【点评】解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.
14.在实数0、π、、、﹣、3.1010010001中,无理数的个数有()
A.1个B.2个C.3个D.4个
【分析】无理数就是无限不循环小数,根据无理数的定义逐个判断即可.
【解答】解:无理数有:π、,共2个,
故选B.
【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
15.以下图形中对称轴的数量小于3的是()
A.B.C.D.
【分析】根据对称轴的概念求解.
【解答】解:A、有4条对称轴;
B、有6条对称轴;
C、有4条对称轴;
D、有2条对称轴.
故选D.
【点评】本题考查了轴对称图形,解答本题的关键是掌握对称轴的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.
16.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()
A.∠A:∠B:∠C=l:2:3
B.三边长为a,b,c的值为1,2,
C.三边长为a,b,c的值为,2,4
D.a2=(c+b)(c﹣b)
【分析】由直角三角形的定义,只要验证最大角是否是90°;由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.
【解答】解:A、∵∠A:∠B:∠C=1:2:3,∴∠C=×180°=90°,故是直角三角形,故本选项错误;
B、∵12+()2=22,∴能构成直角三角形,故本选项错误;
C、∵22+()2≠42,∴不能构成直角三角形,故本选项正确;
D、∵a2=(c+b)(c﹣b),∴a2=c2﹣b2,∴能构成直角三角形,故本选项错误.
故选C.
【点评】本题主要考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
17.已知点A(﹣2,y1),B(3,y2)在函数y=﹣x﹣2的图象上,则()
A.y1>y2B.y1
【分析】根据k<0,函数的函数值y随x的增大而减小解答.
【解答】解:∵k=﹣1<0,
∴函数值y随x的增大而减小,
∵﹣2<3,
∴y1>y2.
故选A.
【点评】本题考查了函数的增减性,在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
18.如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=1,则BC的长为()
A.3B.2+C.2D.1+
【分析】根据线段垂直平分线上的点到线段两端距离相等可得AD=BD,可得∠DAE=30°,易得∠ADC=60°,∠CAD=30°,则AD为∠BAC的角平分线,由角平分线的性质得DE=CD=3,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE,得结果.
【解答】解:∵DE是AB的垂直平分线,
∴AD=BD,
∴∠DAE=∠B=30°,
∴∠ADC=60°,
∴∠CAD=30°,
∴AD为∠BAC的角平分线,
∵∠C=90°,DE⊥AB,
∴DE=CD=1,
∵∠B=30°,
∴BD=2DE=1,
∴BC=3,
故选A.
【点评】本题主要考查了垂直平分线的性质,角平分线上的点到角的两边距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.
19.如图,Rt△MBC中,∠MCB=90°,点M在数轴﹣1处,点C在数轴1处,MA=MB,BC=1,则数轴上点A对应的数是()
A.+1B.﹣+1C.﹣﹣lD.﹣1
【分析】通过勾股定理求出线段MB,而线段MA=MB,进而知道点A对应的数,减去1即可得出答案.
【解答】解:在Rt△MBC中,∠MCB=90°,
∴MB=,
∴MB=,
∵MA=MB,
∴MA=,
∵点M在数轴﹣1处,
∴数轴上点A对应的数是﹣1.
故选:D.
【点评】题目考察了实数与数轴,通过勾股定理,在数轴寻找无理数.题目整体较为简单,与课本例题类似,适合随堂训练.
20.如图,在5×5的正方形网格中,每个小正方形的边长为1,在图中找出格点C,使得△ABC是腰长为无理数的等腰三角形,点C的个数为()
A.3B.4C.5D.7
【分析】根据题意画出图形,找到等腰三角形,计算出腰长进行判断即可.
【解答】解:等腰三角形ABC1中,腰AC1=AB===2;
等腰三角形ABC2中,腰AC2=AB===2;
等腰三角形ABC3中,腰AC3=BC3==;
等腰三角形ABC4中,腰AC4=BC4==;
等腰三角形ABC5中,腰AC5=BC5==;
故选C.
【点评】本题考查了勾股定理,利用格点构造等腰三角形计算出腰长是解题的关键.
三、解答题(52分)
21.计算:.
【分析】首先化简二次根式,然后按照实数的运算法则依次计算.
【解答】解:=2+0﹣=.
【点评】此题主要考查了实数的运算,解题需注意区分三次方根和平方根.
22.(1)已知:(x+1)2﹣9=0,求x的值;
(2)已知a﹣3的平方根为±3,求5a+4的立方根.
【分析】(1)方程变形后,利用平方根定义开方即可求出x的值;
(2)利用平方根定义求出a的值,代入原式求出立方根即可.
【解答】解:(1)方程变形得:(x+1)2=9,
开方得:x+1=3或x+1=﹣3,
解得:x1=2,x2=﹣4;
(2)由题意得:a﹣3=9,即a=12,
则5a+4=64,64的立方根为4.
【点评】此题考查了立方根,平方根,熟练掌握各自的定义是解本题的关键.
23.已知,如图,点A、B、C、D在一条直线上,AB=CD,EA∥FB,EC∥FD,求证:EA=FB.
【分析】首先利用平行线的性质得出,∠A=∠FBD,∠D=∠ECA,进而得出△EAC≌△FBD,即可得出AC=BD,进而得出答案.
【解答】证明:∵EA∥FB,
∴∠A=∠FBD,
∵EC∥FD,
∴∠D=∠ECA,
在△EAC和△FBD中,
,
∴△EAC≌△FBD(AAS),
∴EA=FB.
【点评】此题主要考查了全等三角形的判定与性质等知识,根据已知得出△EAC≌△FBD是解题关键.
24.如图,已知函数y1=(m﹣2)x+2与正比例函数y2=2x图象相交于点A(2,n),函数y1=(m﹣2)x+2与x轴交于点B.
(1)求m、n的值;
(2)求△ABO的面积;
(3)观察图象,直接写出当x满足x<2时,y1>y2.
【分析】(1)先把A点坐标代入正比例函数解析式求出n,从而确定A点坐标,然后利用待定系数法确定m的值;
(2)由函数y1=x+2求得B的坐标,然后根据三角形面积公式求得即可;
(3)根据函数的图象即可求得.
【解答】解:(1)把点A(2,n)代入y2=2x得n=2×2=4,则A点坐标为(2,4),
把A(2,4)代入y1=(m﹣2)x+2得,4=(m﹣2)×2+2
解得m=3;
(2)∵m=3,
∴y1=x+2,
令y=0,则x=﹣2,
∴B(﹣2,0),
∵A(2,4),
∴△ABO的面积=×2×4=4;
(3)由图象可知:当x<2时,y1>y2.
故答案为x<2.
【点评】本题考查了两直线平行或相交的问题:直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)平行,则k1=k2;若直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)相交,则交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式.
25.如图所示,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点.
(1)求证:△BCD≌△ACE;
(2)若AE=8,DE=10,求AB的长度.
【分析】(1)根据等腰直角三角形的性质得出CE=CD,AC=BC,∠ACB=∠ECD=90°,∠B=∠BAC=45°,求出∠ACE=∠BCD,根据SAS推出两三角形全等即可;
(2)根据全等求出AE=BD,∠EAC=∠B=45°,求出∠EAD=90°,在Rt△EAD中,由勾股定理求出AD,即可得出AB的长度.
【解答】(1)证明:∵△ACB与△ECD都是等腰直角三角形,
∴CE=CD,AC=BC,∠ACB=∠ECD=90°,∠B=∠BAC=45°,
∴∠ACE=∠BCD=90°﹣∠ACD,
在△ACE和△BCD中,
∴△BCD≌△ACE(SAS);
(2)解:∵△BCD≌△ACE,
∴BD=AE=8,∠EAC=∠B=45°,
∴∠EAD=45°+45°=90°,
在Rt△EAD中,由勾股定理得:AD===6,
∴AB=BD+AD=8+6=14.
【点评】本题考查了等腰直角三角形的性质,全等三角形的性质和判定,勾股定理的应用,解此题的关键是能求出△ACE≌△BCD和求出AD的长,难度适中.
26.(1)观察与归纳:在如图1所示的平面直角坐标系中,直线l与y轴平行,点A与点B是直线l上的两点(点A在点B的上方).
①小明发现:若点A坐标为(2,3),点B坐标为(2,﹣4),则AB的长度为7;
②小明经过多次取l上的两点后,他归纳出这样的结论:若点A坐标为(t,m),点B坐标为(t,n),当m>n时,AB的长度可表示为m﹣n;
(2)如图2,正比例函数y=x与函数y=﹣x+6交于点A,点B是y=﹣x+6图象与x轴的交点,点C在第四象限,且OC=5.点P是线段OB上的一个动点(点P不与点0、B重合),过点P与y轴平行的直线l交线段AB于点Q,交射线OC于R,设点P横坐标为t,线段QR的长度为m.已知当t=4时,直线l恰好经过点C.
①求点A的坐标;
②求OC所在直线的关系式;
③求m关于t的函数关系式.
【分析】(1)直线AB与y轴平行,A(x1,y1),B(x2,y2),A、B两点横坐标相等,再根据AB的长度为|y1﹣y2|即可求得,
(2)①联立方程,解方程得出A点的坐标;
②根据勾股定理求得C点坐标,然后根据待定系数法即可求得OC所在直线的关系式;
③分两种情况分别讨论求出即可.
【解答】解:(1)①若点A坐标为(2,3),点B坐标为(2,﹣4),则AB的长度为3﹣(﹣4)=7;
②若点A坐标为(t,m),点B坐标为(t,n),当m>n时,AB的长度可表示为m﹣n;
故答案为7;m﹣n;
(2)①解得,
∴A(3,3);
②∵直线l平行于y轴且当t=4时,直线l恰好过点C,如图2,作CE⊥OB于E,
∴OE=4,
在Rt△OCE中,OC=5,
由勾股定理得:
CE==3,
∴点C的坐标为:(4,﹣3);
设OC所在直线的关系式为y=kx,则﹣3=4k,
∴k=﹣,
∴OC所在直线的关系式为y=﹣x;
③由直线y=﹣x+6可知B(6,0),
作AD⊥OB于D,
∵A(3,3),
∴OD=BD=AD=3,
∴∠AOB=45°,OA=AB,
∴∠OAB=90°,∠ABO=45°
当0
∵直线l平行于y轴,
∴∠OPQ=90°,
∴∠OQP=45°,
∴OP=QP,
∵点P的横坐标为t,
∴OP=QP=t,
在Rt△OCE中,
∵tan∠EOC=|k|=,
∴tan∠POR==,
∴PR=OPtan∠POR=t,
∴QR=QP+PR=t+t=t,
∴m关于t的函数关系式为:m=t;
当3
∵∠BPQ=90°,∠ABO=45°,
∴∠BQP=∠PBQ=45°,
∴BP=QP,
∵点P的横坐标为t,
∴PB=QP=6﹣t,
∵PR∥CE,
∴△BPR∽△BEC,
∴=,
∴=,
解得:PR=9﹣t,
∴QR=QP+PR=6﹣t+9﹣t=15﹣t,
∴m关于t的函数关系式为:m=15﹣t;
综上,m关于t的函数关系式为m=.
【点评】此题主要考查了函数综合以及相似三角形的判定与性质和勾股定理等知识,利用分类讨论以及数形结合得出是解题关键.
27.如图1,甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,甲车到达C地后因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图2,结合图象信息解答下列问题:
(1)乙车的速度是80千米/时,乙车行驶的时间t=6小时;
(2)求甲车从C地按原路原速返回A地的过程中,甲车距它出发地的路程y与它出发的时间x的函数关系式;
(3)直接写出甲车出发多长时间两车相距8O千米.
【分析】(1)结合题意,利用速度=路程÷时间,可得乙的速度、行驶时间;
(2)找到甲车到达C地和返回A地时x与y的对应值,利用待定系数法可求出函数解析式;
(3)甲、乙两车相距80千米有两种情况:
①相向而行:相等关系为“甲车行驶路程+乙车行驶路程+甲乙间距离=480”,
②同向而行:相等关系为“甲车距它出发地的路程+乙车路程﹣甲乙间距离=480”
分别根据相等关系列方程可求解.
【解答】解:(1)∵乙车比甲车先出发1小时,由图象可知乙行驶了80千米,
∴乙车速度为:80千米/时,乙车行驶全程的时间t=480÷80=6(小时);
(2)根据题意可知甲从出发到返回A地需5小时,
∵甲车到达C地后因立即按原路原速返回A地,
∴结合函数图象可知,当x=时,y=300;当x=5时,y=0;
设甲车从C地按原路原速返回A地时,即,
甲车距它出发地的路程y与它出发的时间x的函数关系式为:y=kx+b,
将函数关系式得:,
解得:,
故甲车从C地按原路原速返回A地时,
甲车距它出发地的路程y与它出发的时间x的函数关系式为:y=﹣120x+600;
(3)由题意可知甲车的速度为:(千米/时),
设甲车出发m小时两车相距8O千米,有以下两种情况:
①两车相向行驶时,有:120m+80(m+1)+80=480,
解得:m=;
②两车同向行驶时,有:600﹣120m+80(m+1)﹣80=480,
解得:m=3;
∴甲车出发两车相距8O千米.
故答案为:(1)80,6.
初二数学期中考试试卷及答案 2
注意事项:
1.本试卷共6页,有六大题,27小题,满分100分,考试时间120分钟.
2.答题前,考生务必将自己的姓名、准考证号等写在试题卷密封线内指定位置上.
3.考生作答时,选择题和非选择题均须作答在本试题卷指定的位置上.
4.请将选择题的答案填入答案表内.
选择题答案表
题号12345678910得分
答案
一、选择题(本大题满分20分,共10小题,每小题2分)
1.的相反数是
A.B.C.D.2
2.2010年10月1日18时59分57秒,嫦娥二号卫星飞向月球,月球离地球相距约38.4万千米,把数据38.4万用科学计数法表示为
A.B.C.D.
3.去括号后等于的是
A.B.C.D.
4.下列运算正确的是
A.B.C.D.
5.下列各组代数式中,是同类项的是
A.与B.与C.与D.与
6.若是方程的解,则的值是
A.1B.C.2D.
7.若,则下列结论一定错误的是
A.B.C.D.
8.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码的统计如下表所示,则这10双运动鞋尺码的众数和中位数分别为
尺码/厘米2525.52626.527
购买量/双24211
A.25.6,26B.26,25.5C.26,26D.25.5,25.5
9.不等式的'解集在数轴上表示出来应为
10.观察后面的一组单项式:,…,根据你发现的规律,则第6个式子是
A.B.C.D.
二、填空题(本题满分16分,共8小题,每小题2分)
11.零上记作,则零下记作.
12.比较大小:.(填“<”“>”或“=”)
13.单项式的系数为.
14.已知大桶饮用水的价格为7元/桶,七年级一班本学期用了桶水,七年级二班本学期用了桶水,则本期两个班共需交水费元.
15.计算:.
16.不等式的正整数解是.
17.一组数据3,0,的平均数是1,则这组数据中等于.
18.在数轴上,点A与表示的点的距离为3,则点A所表示的数是.
三、解答题(本题满分30分,共5小题,每小题6分)
19.计算:.
20.解方程:
21.解不等式,并把它的解集在数轴上表示出来.
22.如图,是两根柱子在同一灯光下的影子.
(1)请在图中画出光源的位置(用点P表示光源);
(2)在图中画出人物DE在此光源下的影子(用线段EF表示).
23.先化简,再求值.,其中.
四、解答题(本题满分8分)
24.观察下列图形中的棋子:
(1)按照这样的规律摆下去,第4个图形中的棋子个数是多少?
(2)用含的代数式表示第个图形的棋子个数;
(3)求第20个图形需棋子多少个?
五、应用题(本题满分16分,共2小题,每小题8分)
25.为扩大内需,某市实施“家电下乡”政策.第一批列入家电下乡的产品为彩电、冰箱、洗衣机和手机甲种产品.某家电商场2010年一季度对以上四种产品的销售情况进行了统计,绘制了如下的统计图,请你根据图中信息解答下列问题:
(1)该商场一季度手机销售的数量是部,占四种产品总销售量的百分数为;
(2)求该商场一季度冰箱销售的数量,并补全条形统计图;
(3)求扇形统计图中手机所对应的扇形的圆心角的度数.
26.七年级某班为举行游艺活动采购了一批奖品,下面是该班班长与售货员的对话:
班长:阿姨,您好!
售货员:你好,想买点什么?
班长:我这里是100元,请你帮我买10支钢笔和15本笔记本。
售货员:好的,每只钢笔比每本笔记本贵2元,现找你5元,请你收好,再见!
根据这段对话,你能列出一元一次方程求出笔记本和钢笔的单价吗?
五、综合题(本题满分10分)
27.某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.
(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?
(2)若购买这批鱼苗的钱不超过4200元,应如何选购甲种鱼苗?
郴州市2010年下学期基础教育教学质量监测试卷七年级数学答案
一、选择题
题号12345678910
答案ABBCBADDDC
二、填空题
11..12.>.13..14..15..16.1,2.17.6.18.或2.
三、解答题
19.8.20..
21.解集为,它的解集在数轴上表示如图.
22.如图,点P是影子的光源,EF就是人在光源P下的影子.
23.原式=.
四、解答题
24.(1)第4个图形中的棋子个数是13;
(2)第个图形的棋子个数是;
(3)第20个图形需棋子61个.
五、应用题
25.(1)200部,40%;
(2)100台,补全条形统计图如图;
(3).
26.笔记本的单价是3元,钢笔的单价是5元.
五、综合题
27.(1)甲种鱼苗各购买4000尾,乙两种鱼苗购买了2000尾;
(2)选购甲种鱼苗要大于或等于2000尾.
初二数学期中考试试卷及答案 3
一、填空。
1、 五百零三万七千写作( ),7295300省略万后面的尾数约是( )万。
2、 1小时15分=( )小时 5.05公顷=( )平方米
3、 在1.66,1.6,1.7%和 中,最大的数是( ),最小的数是( )。
4、 在比例尺1:30000000的地图上,量得A地到B地的距离是3.5厘米,则A地到B地的实际距离是( )。
5、 甲乙两数的和是28,甲与乙的比是3:4,乙数是( ),甲乙两数的差是( )。
6、 一个两位小数,若去掉它的小数点,得到的新数比原数多47.52。这个两位小数是( )。
7、 A、B两个数是互质数,它们的最大公因数是( ),最小公倍数是( )。
8、 小红把2000元存入银行,存期一年,年利率为2.68%,利息税是5%,那么到期时可得利息( )元。
9、 在边长为a厘米的正方形上剪下一个最大的圆,这个圆与正方形的周长比是( )。
10、 一种铁丝 米重 千克,这种铁丝1米重( )千克,1千克长( )米。
11、 一个圆柱与一个圆锥体积相等,底面积也相等。已知圆柱的高是12厘米,圆锥的高是( )。
12、 已知一个比例中两个外项的积是最小的合数,一个内项是 ,另一个内项是( )。
13、 一辆汽车从A城到B城,去时每小时行30千米,返回时每小时行25千米。去时和返回时的速度比是( ),在相同的时间里,行的路程比是( ),往返AB两城所需要的时间比是( )。
二、判断。
1、小数都比整数小。( )
2、把一根长为1米的绳子分成5段,每段长15 米。( )
3、甲数的 等于乙数的 ,则甲乙两数之比为2:3。( )
4、任何一个质数加上1,必定是合数。( )
5、半径为2厘米的加,圆的周长和面积相等。( )
三、选择。
1、2009年第一季度与第二季度的天数相比是( )
A、第一季度多一天
B、天数相等
C、第二季度多1天
2、一个三角形最小的锐角是50度,这个三角形一定是( )三角形。
A、钝角
B、直角
C、锐角
3、一件商品先涨价5%,后又降价5%,则( )
A、现价比原价低
B、现价比原价高
C、现价和原价一样
4、把12.5%后的%去掉,这个数( )
A、扩大到原来的100倍
B、缩小原来的
C、大小不变
5、孙爷爷今年a岁,张伯伯今年(a-20)岁,过X年后,他们相差( )岁。
A、20
B、X+20
C、X-20
6、在一条线段中间另有6个点,则这8个点可以构成( )条线段。
A、21
B、28
C、36
四、计算。
1、直接写出得数。
10.25= +1 = 24= + = - =
4700.02= 10 = 6 0= 3 - 3=
2、求X的值。
:X= :0.75 6X-0.55=9.5
3、能简算的要简算。
13+
6-2 +1 2.53212.5
五、 综合运用。
1、甲乙两个商场出售洗衣机,一月份甲商场共售出980台,比乙商场多售出 ,甲商场比乙商场多售出多少台?
2、农机厂计划生产800台,平均每天生产44台,生产了10天,余下的任务要求8天完成,平均每天要生产多少台?
本文导航 1、首页2、小升初数学试卷含答案-2
3、一间教室要用方砖铺地。用边长是3分米的正方形方砖,需要960块,如果改用边长为2分米的正方形方砖,需要多少块?(用比例解)
4、一个长为12厘米的.长方形的面积比边长是12厘米的正方形面积少36平方厘米。这个长方形的宽是多少厘米?
5、六年级三个班植树,任务分配是:甲班要植三个班植树总棵树的40%,乙、丙两班植树的棵树的比是4:3,当甲班植树200棵时,正好完成三个班植树总棵树的 。丙班植树多少棵?
6、请根据下面的统计图回答下列问题。
金额(万元)
月份(月)
⑴( )月份收入和支出相差最小。
⑵9月份收入和支出相差( )万元。
⑶全年实际收入( )万元。
⑷平均每月支出( )万元。
⑸你还获得了哪些信息?
答 案
一、 填空(每一空1分,共20分)。
1、5037000 , 730
2、1.25 , 50500
3、1.6 ,1.7%
4、1050千米
5、16 , 4
6、0.48
7、1 , AB或AB
8、50.92
9、:4
10、 , 1
11、36厘米
12、
13、6:5 , 6:5 , 5:6
二、判断(每题1分,共5分)。
略
三、选择(每小题2分,共12分)。
1、C
2、C
3、A
4、A
5、A
6、C
四、计算(9+8+12+3+2)
1、直接写出得数(每小题1分,共9分)。
4 2 20 9.4 25 0 0
2、求X的值(每小题4分,每一步1分,共8分)。
:X= :0.75 6X-0.55=9.5
解: X= 0.75 解: 6X-2.5=9.5
X=0.25 6X=9.5+2.5
X= X=126
X= X=2
3、能简算的要简算(每小题3分,共12分)。
13+
初二数学期中考试试卷及答案 4
应用题:
1.修一条水渠,第一周修了全长的15 ,正好是600米,第二周修了全长的35%,第二周修了多少米?
2.文具店运进红蓝墨水65箱,当红墨水售出11箱,蓝墨水售出20%后,剩下的红蓝墨水相等。问售出蓝墨水多少箱?
3.修路队三天修完一段路。第一天修了全长的25%,第二天修了400米,第三天和第二天修路的长度比是5︰4.这段路长是多少米?
4.做一种零件,8人0.5小时完成64个,照这样计算,3小时要完成144个零件,需要多少个工人?
5.一件工程,甲、乙两人合作18天可以完成。甲单独做要30天完成。现在由甲、乙两人合作6天后,再由甲独做10天,这件工程还剩几分之几?
6,某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?
答案:
1,解:600÷1/5=3000(米)
3000*35%=1050(米)
答:第二周修了1050米。
2,解:设售出蓝墨水为X箱,那么蓝墨水有X÷20%=5X箱
红墨水有(65-5X)箱
65-5X)-11 = 4X
X = 6(箱)
答:售出蓝墨水6箱。
3,解:设全长是X米
3/4)X-400 : 400 = 5 : 4
X = 1200(米)
答:全长为1200米。
4,8个人0.5小时做64个,
1个人1个小时就做16个,
1个人3个小时就做48个
144÷48=3
所以,需要3个人
答:需要3个人。
5,解:设这个工程为单位1.
1÷18=1/18 (甲乙的.效率和)
1÷30=1/30 (甲的效率)
1/18 * 6= 6/18
1/30 * 10=10/30
1-(6/18)-(10/30)=1/3
答:还剩下1/3.
6,原来每天的利润是72×25%×100=1800元
后来每件的利润是是72÷(1+25%)×(1-90%)=9元
后来每天获得利润100×2.5×9=2250元
所以,增加了2250-1800=450元
答:增加了450元。
-->【初二数学期中考试试卷及答案】相关文章:
初二上册数学期中考试卷及答案09-06
精选初二数学下册期末测试卷及答案07-16
初二数学上册期中试卷及答案06-19
初二语文期中考试卷及答案08-15
初二语文期中考试试卷及答案06-03
初二语文期中考试试卷及答案10-29
小升初数学的试卷及答案06-13
初二语文上册期中考试试卷及答案08-22
初二数学期末试卷含答案06-25
初二数学上册期中测试卷附答案10-29