计算机的未来展望
计算机在最近的几十年发展突飞猛进,是在众多行业中发展最快的高新领域之一,上世纪九十年代的人还难以预料今天计算机会如此强大,而今天的我们所预见的未来的计算机又将有几分准确性呢。不管未来的计算机是什么样的,根据现在的研究以及人们的需要来看,有几个特点可能会在较近的未来实现,计算机将会更加微型化,计算能力还会更加强大,而随着计算机与诸多领域的相互渗透,新型计算机也会应运而生,此外,计算机的智能化也是人们研究的热点问题。
1“更小更强大”
从1946年第一台计算机诞生以来,计算机都在向着计算能力更强大的方向发展,而随着计算机技术的民用化,为了更方便人们的生活,计算机又在向着更小的方向发展。“更小更强大”是计算机制造领域人们追求的目标。随着技术的发展,当今的计算机已经具有很强的计算能力和便携性,在以后的发展中,计算机要想更小而有计算能力更强,就需要有更精细更先进的生产技术,这才能使同样的面积具有更高的计算能力和更快的速度,现在CPU的生产技术已经达到纳米级,CPU的更加微小将同时带动电脑其他部件诸如内存、硬盘、显卡、主板的微型化,但与此同时,密集化将会产生更大的发热问题,这就需要研究人员采用更先进的散热技术和优化能力,只有电脑上的主要部件都微型化,才能实现整台电脑的微型化。但就计算能力而言,计算机领域著名的摩尔定律并不是一成不变的,因为分子原子也是有大小的,现在可以将硅处理到纳米级,但总是会遇到小到不能再处理的瓶颈,到那时再先进的生产技术也无济于事,这时便需要考虑到算法和计算方式的问题。在未来是否会有更加先进的计算方式取代二进制,是否会有更加简捷的算法,是计算机领域工作者应该考虑的。 2新型计算机
一方面,一部分人在对现有计算机进行更加深入的研究,而另一方面,一些人在计算机与其他领域的渗透中不断探索,研究新型的计算机。
2.1量子计算机
量子计算机的概念源于对可逆计算机的研究,量子计算机是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。量子计算机是基于量子效应基础上开发的,它利用一种链状分子聚合物的特性来表小开与关的状态,利用激光脉冲来改变分子的状态,使信息沿着聚合物移动,从而进行运算。量子计算机中的数据用量子位存储。由于量子叠加效应,一个量子位可以是0或1,也可以既存储0又存储1。因此,一个量子位可以存储2个数据,同样数量的存储位,量子计算机的存储量比通常计算机大许多。同时量子计算机能够实行量子并行计算,其运算速度可能比目前计算机的PcntiumIII晶片快10亿倍。除具有高速并行处理数据的能力外,量子计算机还将对现有的保密体系、国家安全意识产生重大的冲击。
无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。世界各地的许多实验室正在以巨大的热情追寻着这个梦想。目前已经提出的方案主要利用了原子和光腔相互作用、冷阱束缚离子、电子或核白旋共振、量子点操纵、超导量子干涉等。量子编码采用纠错、避错和防错等。量子计算机使计算的概念焕然一新。
利用量子力学原理设计,由量子元件组装的量子计算机,不仅运算速度快,存储量大,功耗低,而且体积小。一个超高速计算机可以放在口袋里,人造卫星的直径可以从数米减小到数十厘米。目前,量子计算机正在开发研制阶段,随着毫微技术的进步和毫微米级加工技术的发展,科学家们认为,量子计算机的心脏—微处理器将在5年左右研制成功,世界上第一台量子计算机有望在10年后诞生。我国量
子信息专家宣称,将在5年内研制出实用化的量子密码,来服务于社会。美国、英国、以色列等国家都先后开展了有关量子计算机的基础研究,正在开发中的量子计算机有三种类型:核磁共振(NMR)量子计算机;硅基半导体量子计算机;离子阱量子计算机。预计2030年有可能普及量子计算机。
2.2光子计算机
光子计算机是利用光子取代电子进行数据运算、传输和存储。光子计算机即全光数字计算机,以光子代替电子,光互连代替导线互连,光硬件代替计算机中的电子硬件,光运算代替电运算。在光子计算机中,不同波长的光代表不同的数据,可以对复杂度高、计算量大的任务实现快速地并行处理。光子计算机将使运算速度在目前基础上呈指数上升。
与电子计算机相比,光子计算机的信息传递平行通道密度极大。一枚直径5分硬币大小的棱镜,它的通过能力超过全世界现有电话电缆的许多倍。光的并行、高速,天然地决定了光计算机的并行处理能力很强,具有超高速运算速度。超高速电子计算机只能在低温下工作,而光计算机在室温下即可开展工作。光计算机还具有与人脑相似的容错性。系统中某一元件损坏或出错时,并不影响最终的计算结果。 1990年1月29口美国研制出全球首台试验光子计算机,用砷化稼光子开关,体积小、速度快,运算速度为每秒10亿次,具有广阔的发展前景。目前,世界上第一台光子计算机已由欧共体的英国、法国、比利时、德国、意大利的70多名利一学家研制成功,其运算速
《计算机的未来展望》全文内容当前网页未完全显示,剩余内容请访问下一页查看。