教案

高中物理万有引力定律教案

时间:2023-05-26 11:35:11 教案 我要投稿
  • 相关推荐

高中物理万有引力定律教案(通用7篇)

  作为一位优秀的人民教师,时常需要用到教案,借助教案可以让教学工作更科学化。那么你有了解过教案吗?以下是小编精心整理的高中物理万有引力定律教案,欢迎大家借鉴与参考,希望对大家有所帮助。

高中物理万有引力定律教案(通用7篇)

  高中物理万有引力定律教案 1

  教学目标

  知识与技能

  1.了解万有引力定律得出的思路和过程,知道地球上的重物下落与天体运动的统一性。

  2. 知道万有引力是一种存在于所有物体之间的吸引力,知道万有引力定律的适用范围。

  3. 会用万有引力定律解决简单的引力计算问题,知道万有引力定律公式中r的物理意义,了解引力常量G的测定在科学历史上的重大意义。

  4. 了解万有引力定律发现的意义。

  过程与方法

  1.通过演绎牛顿当年发现万有引力定律的过程,体会在科学规律发现过程中猜想与求证的重要性。

  2.体会推导过程中的数量关系.

  情感、态度与价值观

  1. 感受自然界任何物体间引力的关系,从而体会大自然的奥秘.

  2. 通过演绎牛顿当年发现万有引力定律的过程和卡文迪许测定万有引力常量的实验,让学生体会科学家们勇于探索、永不知足的精神和发现真理的曲折与艰辛。

  教学重点、难点

  1.万有引力定律的推导过程,既是本节课的重点,又是学生理解的难点。

  2.由于一般物体间的万有引力极小,学生对此缺乏感性认识。

  教学方法

  探究、讲授、讨论、练习

  教学活动

  (一) 引入新课

  复习回顾上节课的内容

  如果行星的运动轨道是圆,则行星将作匀速圆周运动。根据匀速圆周运动的条件可知,行星必然要受到一个引力。牛顿认为这是太阳对行星的引力,那么,太阳对行星的引力F提供行星作匀速圆周运动所需的向心力。

  学生活动: 推导得

  将V=2πr/T代入上式得

  利用开普勒第三定律 代入上式

  得到:

  师生总结:由上式可得出结论:太阳对行星的引力跟行星的质量成正比,跟行星到太阳的距离的二次方成反比。即:F∝

  教师:牛顿根据其第三定律:太阳吸引行星的力与行星吸引太阳的力是同性质的作用力,且大小相等。于是提出大胆的设想:既然这个引力与行星的质量成正比,也应跟太阳的质量M成正比。即:F∝

  写成等式就是F=G (其中G为比例常数)

  (二)进行新课

  教师:牛顿得到这个规律以后是不是就停止思考了呢?假如你是牛顿,你又会想到什么呢?

  学生回答基础上教师总结:

  猜想一:既然行星与太阳之间的力遵从这个规律,那么其他天体之间的力是否也遵从这个规律呢?(比如说月球与地球之间)

  师生: 因为其他天体的运动规律与之类似,根据前面的推导所以月球与地球之间的力,其他行星的卫星和该行星之间的力,都满足上面的规律,而且都是同一种性质的力。

  教师:但是牛顿的思考还是没有停止。假如你是牛顿,你又会想到什么呢?

  学生回答基础上教师总结:

  猜想二:地球与月球之间的力,和地球与其周围物体之间的力是否遵从相同的规律?

  教师:地球对月球的引力提供向心力,即F= =ma

  地球对其周围物体的力,就是物体受到的重力,即F’=m’g

  从以上推导可知:地球对月球的引力遵从以上规律,即F=G

  那么,地球对其周围物体的力是否也满足以上规律呢?即F’=G

  此等式是否成立呢?

  已知:地球半径R=6.37×106m , 月球绕地球的轨道半径r=3.8×108 m ,

  月球绕地球的公转周期T=27.3天, 重力加速度g=9.8

  (以上数据在当时都已经能够精确测量)

  提问:同学们能否通过提供的数据验证关系式F’=G 是否成立?

  学生回答基础上教师总结:

  假设此关系式成立,即F’=G

  可得: =ma=G

  F’=m’g=G

  两式相比得: a/g=R2 / r2

  但此等式是在以上假设成立的基础上得到的,反过来若能通过其他途径证明此等式成立,也就证明了前面的假设是成立的。代人数据计算:

  a/g≈1/3600

  R2 / r2≈1/3600

  即a/g=R2 / r2 成立,从而证明以上假设是成立的,说明地球与其周围物体之间的力也遵从相同的规律,即F’=G

  这就是牛顿当年所做的著名的“月-地”检验,结果证明他的猜想是正确的。从而验证了地面上的重力与地球吸引月球、太阳吸引行星的力是同一性质的力,遵守同样的规律。

  教师:不过牛顿的思考还是没有停止,假如你是牛顿,此时你又会想到什么呢?

  学生回答基础上教师总结:

  猜想三:自然界中任何两个物体间的作用力是否都遵从相同的规律?

  牛顿在研究了这许多不同物体间的作用力都遵循上述引力规律之后。于是他大胆地把这一规律推广到自然界中任意两个物体间,于1687年正式发表了具有划时代意义的万有引力定律。

  万有引力定律

  ①内容

  自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的二次方成反比。

  ②公式

  如果用m1和m2表示两个物体的质量,用r表示它们的距离,那么万有引力定律可以用下面的公式来表示 (其中G为引力常量)

  说明:1.G为引力常量,在SI制中,G=6.67×10-11N·m2/kg2.

  2.万有引力定律中的物体是指质点而言,不能随意应用于一般物体。

  a.对于相距很远因而可以看作质点的物体,公式中的r 就是指两个质点间的距离;

  b.对均匀的球体,可以看成是质量集中于球心上的质点,这是一种等效的简化处理方法。

  教师:牛顿虽然得到了万有引力定律,但并没有很大的实际应用,因为当时他没有办法测定引力常量G的数值。直到一百多年后英国的另一位物理学家卡文迪许才用实验测定了G的数值。

  利用多媒体演示说明卡文迪许的扭秤装置及其原理。

  扭秤的主要部分是这样一个T字形轻而结实的框架,把这个T形架倒挂在一根石英丝下。若在T形架的两端施加两个大小相等、方向相反的力,石英丝就会扭转一个角度。力越大,扭转的角度也越大。反过来,如果测出T形架转过的角度,也就可以测出T形架两端所受力的大小。现在在T形架的两端各固定一个小球,再在每个小球的附近各放一个大球,大小两个球间的距离是可以较容易测定的。根据万有引力定律,大球会对小球产生引力,T形架会随之扭转,只要测出其扭转的角度,就可以测出引力的大小。当然由于引力很小,这个扭转的角度会很小。怎样才能把这个角度测出来呢?卡文迪许在T形架上装了一面小镜子,用一束光射向镜子,经镜子反射后的光射向远处的刻度尺,当镜子与T形架一起发生一个很小的转动时,刻度尺上的光斑会发生较大的`移动。这样,就起到一个化小为大的效果,通过测定光斑的移动,测定了T形架在放置大球前后扭转的角度,从而测定了此时大球对小球的引力。卡文迪许用此扭秤验证了牛顿万有引力定律,并测定出万有引力恒量G的数值。这个数值与近代用更加科学的方法测定的数值是非常接近的。

  卡文迪许测定的G值为6.754×10-11 N·m2/kg2,现在公认的G值为6.67×10-11 N·m2/kg2。由于万有引力恒量的数值非常小,所以一般质量的物体之间的万有引力是很小的,我们可以估算一下,两个质量50kg的同学相距0.5m时之间的万有引力有多大(可由学生回答:约6.67×10-7N),这么小的力我们是根本感觉不到的。只有质量很大的物体对一般物体的引力我们才能感觉到,如地球对我们的引力大致就是我们的重力,月球对海洋的引力导致了潮汐现象。而天体之间的引力由于星球的质量很大,又是非常惊人的:如太阳对地球的引力达3.56×1022N。

  教师:万有引力定律建立的重要意义

  17世纪自然科学最伟大的成果之一,它把地面上的物体运动的规律和天体运动的规律统一了起来,对以后物理学和天文学的发展具有深远的影响,而且它第一次揭示 了自然界中的一种基本相互作用的规律,在人类认识自然的历史上树立了一座里程碑。

  高中物理万有引力定律教案 2

  一、课题:

  万有引力定律

  二、课型:

  概念课(物理按教学内容课型分为:规律课、概念课、实验课、习题课、复习课)

  三、课时:

  1课时

  四、教学目标

  (一)知识与技能

  1.理解万有引力定律的含义并会用万有引力定律公式解决简单的引力计算问题。

  2.知道万有引力定律公式的适用范围。

  (二)过程与方法:在万有引力定律建立过程的学习中,学习发现问题、提出问题、猜想假设与推理论证等方法。

  (三)情感态度价值观

  1.培养学生研究问题时,抓住主要矛盾,简化问题,建立理想模型的处理问题的能力。

  2.通过牛顿在前人的基础上发现万有引力定律的思考过程,说明科学研究的长期性,连续性及艰巨性,提高学生科学价值观。

  五、教学重难点

  重点:万有引力定律的内容及表达公式。

  难点:

  1.对万有引力定律的理解;

  2.学生能把地面上的物体所受重力与其他星球与地球之间存在的引力是同性质的力联系起来。

  六、教学法:

  合作探究、启发式学习等

  七、教具:

  多媒体、课本等

  八、教学过程

  (一)导入

  回顾以前对月-地检验部分的学习,明确既然太阳与行星之间,地球与月球之间、地球对地面物体之间具有与两个物体的质量成正比,跟它们的距离的二次方成反比的引力。这里进一步大胆假设:是否任何两个物体之间都存在这样的力?

  引发学生思考:很可能有,只是因为我们身边的物体质量比天体的质量小得多,我们不易觉察罢了,于是我们可以把这一规律推广到自然界中任意两个物体间,即具有划时代意义的万有引力定律.然后在学生的兴趣中进行假设论证。

  (二)进入新课

  学生自主阅读教材第40页万有引力定律部分,思考以下问题:

  1.什么是万有引力?并举出实例。

  教师引导总结:万有引力是普遍存在于宇宙中任何有质量的物体之间的相互吸引力。日对地、地对月、地对地面上物体的引力都是其实例。

  2.万有引力定律怎样反映物体之间相互作用的规律?其数学表达式如何?并注明每个符号的单位和物理意义。

  教师引导总结:万有引力定律的内容是:宇宙间一切物体都是相互吸引的。两物体间的引力大小,跟它的质量的乘积成下比,跟它们间的距离平方成反比.式中各物理量的含义及单位:F为两个物体间的引力,单位:N.m1、m2分别表示两个物体的质量,单位:kg,r为两个物体间的距离,单位:m。G为万有引力常量:G=6.67×10-11N·m2/kg2,它在数值上等于质量是1Kg的物体相距米时的相互作用力,单位:N·m2/kg2.

  3.万有引力定律的适用条件是什么?

  教师引导总结:只适用于两个质点间的引力,当物体之间的距离远大于物体本身时,物体可看成质点;当两物体是质量分布均匀的球体时,它们间的引力也可直接用公式计算,但式中的r是指两球心间的距离。

  4.你认为万有引力定律的发现有何深远意义?

  教师引导总结:万有引力定律的发现有着重要的`物理意义:它对物理学、天文学的发展具有深远的影响;它把地面上物体运动的规律和天体运动的规律统一起来;对科学文化发展起到了积极的推动作用,解放了人们的思想,给人们探索自然的奥秘建立了极大信心,人们有能力理解天地间的各种事物。

  (三)深化理解

  在完成上述问题后,小组讨论,学生在教师的引导下进一步深化对万有引力定律的理解,即:

  1.普遍性:万有引力存在于任何两个物体之间,只不过一般物体的质量与星球相比太小了,他们之间的万有引力也非常小,完全可以忽略不计。

  2.相互性:两个物体相互作用的引力是一对作用力与反作用力。

  3.特殊性:两个物体间的万有引力和物体所在的'空间及其他物体存在无关。

  4.适用性:只适用于两个质点间的引力,当物体之间的距离远大于物体本身时,物体可看成质点;当两物体是质量分布均匀的球体时,它们间的引力也可直接用公式计算,但式中的r是指两球心间的距离。

  (四)活动探究

  请两名学生上讲台做个游戏:两人靠拢后离开三次以上。创设情境,加深学生对本节知识点的印象和运用,请一位同学上台展示计算结果,师生互评。

  1.请估算这两位同学,相距1m远时它们间的万有引力多大?(可设他们的质量为50kg)

  解:由万有引力定律得:代入数据得:F1=1.7×10-7N

  2.已知地球的质量约为6.0×1024kg,地球半径为6.4×106m,请估算其中一位同学和地球之间的万有引力又是多大?

  解:由万有引力定律得:代入数据得:F2=493N

  3.已知地球表面的重力加速度,则其中这位同学所受重力是多少?并比较万有引力和重力?

  解:G=mg=490N。

  比较结果为万有引力比重力大,原因是因为在地球表面上的物体所受万有引力可分解为重力和自转所需的向心力。

  (五)课堂小结

  小结:学生在教师引导下认真总结概括本节内容,完成多媒体呈现的知识网络框架图,并把自己这节课的体会写下来、比较黑板上的小结和自己的小结,进行生生互评。

  (六)布置作业

  作业:完成“问题与练习”

  九、板书设计

  略

  高中物理万有引力定律教案 3

  教学目标

  知识目标

  1、使学生能应用万有引力定律解决天体问题:

  2、通过万有引力定律计算天体的质量、天体的密度、天体的重力加速度、天体运行的速度等;

  3、通过应用万有引力定律使学生能在头脑中建立一个清晰的解决天体问题的图景:卫星作圆周运动的向心力是两行星间的万有引力提供的。

  能力目标

  1、通过使学生能熟练的掌握万有引力定律;

  情感目标

  1、通过使学生感受到自己能应用所学物理知识解决实际问题——天体运动。

  教学建议

  应用万有引力定律解决天体问题主要解决的是:天体的质量、天体的密度、天体的重力加速度、天体运行的速度天文学的初步知识等。教师在备课时应了解下列问题:

  1、天体表面的重力加速度是由天体的质量和半径决定的。

  2、地球上物体的重力和地球对物体的万有引力的关系:物体随地球的自转所需的向心力,是由地球对物体引力的一个分力提供的,引力的另一个分力才是通常所说的物体受到的重力。

  教学设计

  教学重点:

  万有引力定律的应用

  教学难点:

  地球重力加速度问题

  教学方法:

  讨论法

  教学用具:

  计算机

  教学过程:

  一、地球重力加速度。

  问题一:在地球上是赤道的重力加速度大还是两极的加速度大?

  这个问题让学生充分讨论:

  1、有的学生认为:地球上的加速度是不变化的。

  2、有的学生认为:两极的重力加速度大。

  3、也有的的学生认为:赤道的重力加速度大。

  出现以上问题是因为:学生可能没有考虑到地球是椭球形的,也有不记得公式的等。

  教师板书并讲解:

  在质量为、半径为的地球表面上,如果忽略地球自转的影响,质量为的物体的重力加速度,可以认为是由地球对它的万有引力产生的。由万有引力定律和牛顿第二定律有:

  则该天体表面的重力加速度为:

  由此式可知,地球表面的重力加速度是由地球的质量和半径决定的。而又因为地球是椭球的赤道的半径大,两极的半径小,所以赤道上的重力加速度小,两极的重力加速度大。也可让学生发挥得:离地球表面的距离越大,重力加速度越小。

  问题二:有1kg的物体在北京的重力大还是在上海的重力大?

  这个问题有学生回答

  问题三:

  1、地球在作什么运动?人造地球卫星在作什么运动?

  通过展示图片为学生建立清晰的图景。

  2、作匀速圆周运动的'向心力是谁提供的?

  回答:地球与卫星间的万有引力即由牛顿第二定律得:

  3、由以上可求出什么?

  ①卫星绕地球的线速度:

  ②卫星绕地球的周期:

  ③卫星绕地球的角速度:

  教师可带领学生分析上面的公式得:

  当轨道半径不变时,则卫星的周期不变、卫星的线速度不变、卫星的角速度也不变。

  当卫星的角速度不变时,则卫星的轨道半径不变。

  课堂练习:

  1、假设火星和地球都是球体,火星的质量和地球质量。之比,火星的半径和地球半径之比,那么离火星表面高处的重力加速度和离地球表面高处的重力加速度。之比等于多少?

  解:因物体的重力来自万有引力,所以:

  则该天体表面的重力加速度为:

  所以:

  2、若在相距甚远的两颗行星和的表面附近,各发射一颗卫星和,测得卫星绕行星的周期为,卫星绕行星的周期为,求这两颗行星密度之比是多大?

  解:设运动半径为,行星质量为,卫星质量为。

  由万有引力定律得:

  解得:

  所以:

  3、某星球的质量约为地球的的9倍,半径约为地球的一半,若从地球上高处平抛一物体,射程为60米,则在该星球上,从同样高度以同样的初速度平抛同一物体,射程应为:

  A、10米B、15米C、90米D、360米

  解得:(A)

  布置作业:

  探究活动

  组织学生收集资料,编写相关论文,可以参考下列题目:

  1、月球有自转吗?(针对这一问题,学生会很容易回答出来,但是关于月球的自转情况却不一定很清楚,教师可以加以引伸,比如月球自转周期,为什么我们看不到月球的另一面?)

  2、观察月亮。

  有条件的让学生观察月亮以及星体,收集相关资料,练习地理天文知识编写小论文。

  高中物理万有引力定律教案 4

  【学习目标】

  1.了解万有引力定律的伟大成就,能测量天体的质量及预测未知天体等

  2.熟练掌握应用万有引力定律测天体质量的思路和方法。

  3.体会万有引力定律在天文学史上取得的巨大成功,激发学科学习激情和探索精神。

  【学习重难点】

  1.重点:测天体的质量的思路和方法

  2.难点:物体的重力和万有引力的区别和联系。

  【学习方法】

  自主学习、合作交流、讲授法、练习法等。

  【课时安排】1课时

  【学习过程】

  一、导入新课:

  万有引力定律发现后,尤其是卡文迪许测出引力常量后,立即凸显出定律的实用价值,能利用万有引力定律测天体的质量,科学性的去预测未知的天体!这不仅进一步证明了万有引力定律的正确性,而且确立了万有引力定律在科学史上的地位,有力地树立起人们对年轻的物理学的尊敬。

  二、多媒体展示问题,学生带着问题学习教材,交流讨论。

  1.说一说物体的重力和万有引力的区别和联系

  2.写出应用万有引力定律测天体质量的思路和方法。

  3.简述“笔尖下发现的行星”的天文学史事,该史事说明了什么?

  三、师生互动参与上述问题的学习与讨论

  1.学生互动学习交流发言。

  2.教师指导、帮助学生进一步学习总结(结合课件展示)。

  (1)万有引力和物体的重力

  地球表面附近的物体随地球的自转而做匀速圆周运动,受力分析如图(1)

  1)在两极点:

  2)除两极点外:万有引力的一个分力提供向心力,

  另外一个分力就是物体受到的重力,由于提供

  向心力的力很小(即使在赤道上),物体的重力

  的数值和万有引力相差很小。

  3)在赤道处:

  显然,地球表面附近随纬度的增加,重力加速度值略微增大。若忽略地球自转的影响,物体受到的万有引力约为物体在该处受到的重力,不予考虑二者的差别。

  物体在距离地心距离为r(r>R)处的加速度为ar:

  则:

  若忽略地球自转的影响,物体在距离地心距离为r处的重力加速度为gr:

  则:

  (2)“科学真是迷人”巧测地球的质量

  若不考虑地球自转的影响:,则:

  地面的重力加速度g和地球半径R在卡文迪许之前就已知道,卡文迪许测出了引力常量G,就可以算出地球的质量M。这在当时看来就是一个科学奇迹。难怪著名文学家马克·吐温满怀激情地说:“科学真是迷人。根据零星的事实,增添一点猜想,竟能赢得那么多收获!”

  (3)计算天体的质量

  1)计算太阳的质量

  核心思路方法:万有引力提供行星做匀速圆周运动的向心力。

  对行星由牛顿第二定律得:可得:

  2)计算其他中心天体的质量:

  核心思路方法:万有引力提供小星体绕中心天体做匀速圆周运动的向心力。

  对小星体由牛顿第二定律得:

  可得:

  思考与讨论:如何进一步测中心天体的密度?

  中心天体的体积:,中心天体的密度:

  联立以上各式得: 。

  若,则:这是很重要的一个结论。

  (4)发现未知天体:

  1)笔尖下发现海王星

  1781年人们发现矛盾亚当斯和勒维耶计算并预言伽勒发现证实

  2)哈雷彗星的“按时回归”

  1705年英国天文学家哈雷根据万有引力定律计算了一颗著名彗星的'轨道并正确预言了它的回归。

  3)海王星的发现和哈雷彗星的“按时回归”不仅进一步证实了万有引力定律的正确性,同时也确立了万有引力定律在科学史上的地位,也成为科学史上的美谈。科学定律的可预测性体现的淋漓尽致!

  四、随堂练习:

  例1:开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立。经测定月地距离为3.84×108m,月球绕地球运动的周期为2.36×106S,试计算地球的质量M地。(G=6.67×10-11Nm2/kg2,结果保留一位有效数字)

  例2:2001年10月22日,欧洲航天局由卫星观测发现银河系中心存在一个超大型黑洞,命名为MCG6-30-15,由于黑洞的强大引力,周围物质大量掉入黑洞,假定银河系中心仅此一个黑洞,已知太阳系绕银河系中心匀速运转,下列哪一组数据可估算该黑洞的质量()

  A.地球绕太阳公转的周期和速度

  B.太阳的质量和运行速度

  C.太阳的质量和到MCG6-30-15的距离

  D.太阳运行速度和到MCG6-30-15的距离

  例3:地球可视为球体,其自转周期为T,在赤道上用弹簧秤测得某物体的重量是在两极处测得同一物体重量的0.9倍,已知引力常量为G,试求地球的平均密度。

  例4:某星球的质量是地球质量的9倍,半径是地球半径的一半,若从地球上平抛一物体射程为60m,则在该星球上以同样的初速度,同样的高度平抛物体,其射程是

  五、学习目标的自我评价和学习小结

  本节课首先认识了万有引力和重力间的差异,后学习了应用万有引力定律测天体质量的两种基本方法:1)和2),最后见识了万有引力定律在探索宇宙过程中发挥的重要作用和地位。

  六、课后作业:

  教材P432、3、4

  【板书设计】

  §6.4万有引力理论的成就

  一、万有引力和物体的重力

  1)在两极点:

  2)在赤道处:,

  二、“科学真是迷人”巧测地球的质量

  ,则:

  三、计算天体的质量

  1)计算太阳的质量可得:

  2)计算其他中心天体的质量:

  可得:

  四、发现未知天体:1)笔尖下发现海王星

  2)哈雷彗星的“按时回归”

  五、随堂练习:略

  六、课后作业:教材P432、3、4

  高中物理万有引力定律教案 5

  一.活动目标

  1.通过演示、实验等方法,对物体下落现象产生兴趣。

  2.观察、认识物体下落的必然性。

  二.活动准备

  1.“轱辘轱辘”学教具、“美丽下落路”学教具。

  2. 沙包、毛绒玩具、纸球、棉花等。

  三.活动过程

  (一)发现物体会下落的特征。

  1.玩“轱辘轱辘”。

  ①幼儿玩“轱辘轱辘”, 感受物体往下落。

  把手放开后瓶子会怎么样?(会下落)瓶子落到哪里?(落到地上)

  T:我们不动瓶子,它会自己上来吗?(不会)怎么让它上来?(摇动把手)

  放开手后会怎么样?(落到地上)

  ②师幼发现:轱辘上吊着的物体是会往下落的`。

  2.再次探索

  ①提供多种材料供幼儿自由探索。(沙包、毛绒玩具、纸球、棉花等)

  ②在探索的过程中,老师提示:

  先将这些物体拿在手中,手放开后会怎么样?它们都落到哪里去了?

  将它们轻轻地往上抛后,它们又落到了那里?

  将它们重重地往上抛后,它们又落到了那里?

  ③师幼发现:物体无论是放开手后、轻轻地、重重地往上抛,最后物体都落到了地上。

  3.探讨生活中看到的物体下落现象。

  ①观看视频:水往下流、苹果往下落

  ②幼儿列举生活中看到的物体下落的现象。

  ③师幼发现:生活中所有的物体都是往下落的。

  4.师幼共同小结:

  我们的地球是有吸引力的,把物体都往下吸。

  (二)玩“美丽下落路”

  1.出示“美丽下落路”,教师示范将颜料倒入盒中,请幼儿猜一猜颜料会往那里走。

  T:老师将颜料舀入盒子中,旋转盒子,你们说颜料会往哪里走?(不管怎样转动盒,颜料都是往下流的,)为什么?(因为我们的地球有吸引力)

  2. 幼儿自由玩“美丽下落路”。

  T:孩子们,你们真是太聪明了,我们用地球有吸引力的原理来创作一幅神奇有趣的“美丽下落路”吧。

  3. 幼儿自主创作,教师巡回指导。

  (三)结束

  原来地球的吸引力还能让我们创作出这么美丽的作品,我们把它们带回活动室展示出来吧。

  高中物理万有引力定律教案 6

  一、教学目标

  1.了解万有引力定律得出的思路和过程.

  2.理解万有引力定律的含义并会推导万有引力定律.

  3.知道任何物体间都存在着万有引力,且遵循相同的规律.

  二、教学重点

  1.万有引力定律的推导.

  2.万有引力定律的内容及表达公式.

  三、教学难点

  1.对万有引力定律的理解.

  2.使学生能把地面上的物体所受的重力与其他星球与地球之间存在的引力是同性质的力联系起来.

  四、教学方法

  1.对万有引力定律的推理——采用分析推理、归纳总结的方法.

  2.对疑难问题的处理——采用讲授法、例证法.

  五、教学步骤

  导入新课

  请同学们回忆一下上节课的内容,回答如下问题:

  1.行星的运动规律是什么?

  2.开普勒第一定律、第三定律的内容?

  同学们回答完以后,老师评价、归纳总结.

  同学们回答得很好,行星绕太阳运转的轨道是椭圆,太阳处在这个椭圆的一个焦点上,那么行星为什么要这样运动?而且还有一定的规律?这类问题从17世纪就有人思考过,请阅读课本,这个问题的答案在不同的时代有不同的结论,可见,我们科学的研究要经过一个相当长的艰巨的过程.

  新课教学

  1.同学们阅读完以后,知道到了牛顿时代的一些科学家,如胡克、哈雷等,对这一问题的认识更进了一步,把地面上的运动和天体的运动统一起来了.事实上,行星运动的椭圆轨道离心率很接近于1,我们把它理想化为一个圆形轨道,这样就简化了问题,易于我们在现有认知水平上来接受.

  根据圆周运动的条件可知行星必然受到一个太阳给的力.牛顿认为这是太阳对行星的引力,那么,太阳对行星的引力F应该为行星运动所受的`向心力,即:

  再根据开普勒第三定律 代入上式

  可得到:

  其中m为行星的质量,r为行星轨道半径,即太阳与行星的距离.由上式可得出结论:太阳对行星的引力跟行星的质量成正比,跟行星到太阳的距离的二次方成反比.

  即:F∝

  根据牛顿第三定律:太阳吸引行星的力与行星吸引太阳的力是同性质的相互作用力.既然太阳对行星的引力与行星的质量成正比,那么行星对太阳也有作用力,也应与太阳的质量M成正比,即:

  F∝

  用文字表述为:太阳与行星之间的引力,与它们质量的乘积成正比,与它们的距离的平方成反比.

  用公式表述:

  公式中的G是一个常数,叫万有引力常量.

  进而牛顿还研究了月地间的引力、许多不同物体间的作用力都遵循上述引力规律,于是他把这一规律推广到自然界中任意两个物体间,即具有划时代意义的万有引力定律.

  2.万有引力定律:

  (1)内容:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的二次方成反比.

  (2)公式:

  (3)疑问:在日常生活中,我们各自之间或人与物体间,为什么都对这种作用没有任何感觉呢?

  这是因为一般物体的质量与星球的质量相比太小了,它们之间的引力太小了,所以我们不易感觉到.下一节课的卡文迪许的精巧的扭秤实验将为我们验证.

  (4)各物理量的含义及单位

  r表示两个具体物体相距很远时,物体可以视为质点.如果是规则形状的均匀物体,r为它们的几何中心间的距离.单位为“米”.

  G为万有引力常量,G=6.67×10-11,单位为Nm2/kg2.这个引力常量的出现要比万有引力定律晚一百多年哪!是英国的物理学家卡文迪许测出来的,我们下节课就要学习.

  (5) 扩展思路

  牛顿想验证地面上的物体的重力与月地间、行星与太阳间的引力是同种性质的力,他做了著名的“月——地”检验,请同学们阅读课本第105页有关内容.然后归纳一下他的思路.オ①如果重力与星体间的引力是同种性质的力,都与距离的二次方成反比关系,那么月球绕地球做近似圆周运动的向心加速度就应该是重力加速度的1/3600.

  牛顿计算了月球的向心加速度,结果证明是对的.

  ②如果我们已知地球质量为5.89×1024kg.地球半径为6.37×106m.同学们试计算一下月球绕地球的向心加速度是多大?

  同学们通过计算验证,

  ③为了验证地面上的重力与月球绕地球运转的向心力是同一性质的力,还提出一个理想实验:设想一个小月球非常接近地球,以至于几乎触及地球上最高的山顶,那么使这个小月球保持轨道运动的向心力当然就应该等于它在山顶处所受的重力.如果小月球突然停止做轨道运动,它就应该同山顶处的物体一样以相同速度下落.如果它所受的向心力不是重力,那么它就将在这两种力的共同作用下以更大的速度下落,这是与我们的经验不符的.所以,是同性质的力.

  (6)万有引力定律发现的重要意义

  万有引力定律的发现,对物理学、天文学的发展具有深远的影响.它把地面上物体运动的规律和天体运动的规律统一了起来.在科学文化发展上起到了积极的推动作用,解放了人们的思想,给人们探索自然的奥秘建立了极大的信心,人们有能力理解天地间的各种事物.

  六、巩固练习(用投影片出示题目)

  1.要使两物体间的万有引力减小到原来的1/4,下列办法不可采用的是

  獳.使两物体的质量各减小一半,距离不变

  B.使其中一个物体的质量减小到原来的1/4,距离不变

  C.使两物体间的距离增为原来的2倍,质量不变

  D.距离和质量都减为原来的1/4

  2.火星的半径是地球半径的一半,火星的质量约为地球质量的1/9;那么地球表面50 kg的物体受到地球的吸引力约是火星表面同质量的物体受到火星吸引力的 倍.

  3.两个大小相同的实心小铁球紧靠在一起时,它们之间的万有引力为F.若两个半径为原来2倍的实心大铁球紧靠在一起,则它们之间的万有引力为

  獳.4F 獴.2F 獵.8F 獶.16F

  参考答案:

  1.D 2.2.25 3.D

  七、小结(用投影片出示内容)

  通过这节课的学习,我们了解并知道:

  1.得出万有引力定律的思路及方法.

  2.任何两个物体间存在着相互作用的引力的一般规律:即

  其中G为万有引力常量,r为两物间的距离.

  八、板书设计

  第二节 万有引力定律

  高中物理万有引力定律教案 7

  一、教学目标

  1、在开普勒第三定律的基础上,推导得到万有引力定律,使学生对此规律有初步理解。

  2、介绍万有引力恒量的测定方法,增加学生对万有引力定律的感性认识。

  3、通过牛顿发现万有引力定律的思考过程和卡文迪许扭秤的设计方法,渗透科学发现与科学实验的方法论教育。

  二、重点、难点分析

  1、万有引力定律的推导过程,既是本节课的重点,又是学生理解的难点,所以要根据学生反映,调节讲解速度及方法。

  2、由于一般物体间的万有引力极小,学生对此缺乏感性认识,又无法进行演示实验,故应加强举例。

  三、教具

  卡文迪许扭秤模型。

  四、教学过程

  (一)引入新课

  1、引课:前面我们已经学习了有关圆周运动的知识,我们知道做圆周运动的物体都需要一个向心力,而向心力是一种效果力,是由物体所受实际力的合力或分力来提供的。另外我们还知道,月球是绕地球做圆周运动的,那么我们想过没有,月球做圆周运动的向心力是由谁来提供的呢?(学生一般会回答:地球对月球有引力。)

  我们再来看一个实验:我把一个粉笔头由静止释放,粉笔头会下落到地面。

  实验:粉笔头自由下落。

  同学们想过没有,粉笔头为什么是向下运动,而不是向其他方向运动呢?同学可能会说,重力的方向是竖直向下的,那么重力又是怎么产生的呢?地球对粉笔头的引力与地球对月球的引力是不是一种力呢?(学生一般会回答:是。)这个问题也是300多年前牛顿苦思冥想的问题,牛顿的结论也是:yes。

  既然地球对粉笔头的引力与地球对月球有引力是一种力,那么这种力是由什么因素决定的,是只有地球对物体有这种力呢,还是所有物体间都存在这种力呢?这就是我们今天要研究的万有引力定律。

  板书:万有引力定律

  (二)教学过程

  1、万有引力定律的推导

  首先让我们回到牛顿的年代,从他的角度进行一下思考吧。当时“日心说”已在科学界基本否认了“地心说”,如果认为只有地球对物体存在引力,即地球是一个特殊物体,则势必会退回“地球是宇宙中心”的说法,而认为物体间普遍存在着引力,可这种引力在生活中又难以观察到,原因是什么呢?(学生可能会答出:一般物体间,这种引力很小。如不能答出,教师可诱导。)所以要研究这种引力,只能从这种引力表现比较明显的物体——天体的问题入手。当时有一个天文学家开普勒通过观测数据得到了一个规律:所有行星轨道半径的3次方与运动周期的2次方之比是一个定值,即开普勒第

  其中m为行星质量,R为行星轨道半径,即太阳与行星的距离。也就是说,太阳对行星的'引力正比于行星的质量而反比于太阳与行星的距离的平方。

  而此时牛顿已经得到他的第三定律,即作用力等于反作用力,用在这里,就是行星对太阳也有引力。同时,太阳也不是一个特殊物体,它

  用语言表述,就是:太阳与行星之间的引力,与它们质量的乘积成正比,与它们距离的平方成反比。这就是牛顿的万有引力定律。如果改

  其中G为一个常数,叫做万有引力恒量。(视学生情况,可强调与物体重力只是用同一字母表示,并非同一个含义。)

  应该说明的是,牛顿得出这个规律,是在与胡克等人的探讨中得到的。

  2、万有引力定律的理解

  下面我们对万有引力定律做进一步的说明:

  (1)万有引力存在于任何两个物体之间。虽然我们推导万有引力定律是从太阳对行星的引力导出的,但刚才我们已经分析过,太阳与行星都不是特殊的物体,所以万有引力存在于任何两个物体之间。也正因为此,这个引力称做万有引力。只不过一般物体的质量与星球相比过于小了,它们之间的万有引力也非常小,完全可以忽略不计。所以万有引力定律的表述是:

  板书:任何两个物体都是相互吸引的,引力的大小跟两个物体的质

  其中m1、m2分别表示两个物体的质量,r为它们间的距离。

  (2)万有引力定律中的距离r,其含义是两个质点间的距离。两个物体相距很远,则物体一般可以视为质点。但如果是规则形状的均匀物体相距较近,则应把r理解为它们的几何中心的距离。例如物体是两个球体,r就是两个球心间的距离。

  (3)万有引力是因为物体有质量而产生的引力。从万有引力定律可以看出,物体间的万有引力由相互作用的两个物体的质量决定,所以质量是万有引力的产生原因。从这一产生原因可以看出:万有引力不同于我们初中所学习过的电荷间的引力及磁极间的引力,也不同于我们以后要学习的分子间的引力。

  3、万有引力恒量的测定

  牛顿发现了万有引力定律,但万有引力恒量G这个常数是多少,连他本人也不知道。按说只要测出两个物体的质量,测出两个物体间的距离,再测出物体间的引力,代入万有引力定律,就可以测出这个恒量。但因为一般物体的质量太小了,它们间的引力无法测出,而天体的质量太大了,又无法测出质量。所以,万有引力定律发现了100多年,万有引力恒量仍没有一个准确的结果,这个公式就仍然不能是一个完善的等式。直到100多年后,英国人卡文迪许利用扭秤,才巧妙地测出了这个恒量。

  这是一个卡文迪许扭秤的模型。(教师出示模型,并拆装讲解)这个扭秤的主要部分是这样一个T字形轻而结实的框架,把这个T形架倒挂在一根石英丝下。若在T形架的两端施加两个大小相等、方向相反的力,石英丝就会扭转一个角度。力越大,扭转的角度也越大。反过来,如果测出T形架转过的角度,也就可以测出T形架两端所受力的大小。现在在T形架的两端各固定一个小球,再在每个小球的附近各放一个大球,大小两个球间的距离是可以较容易测定的。根据万有引力定律,大球会对小球产生引力,T形架会随之扭转,只要测出其扭转的角度,就可以测出引力的大小。当然由于引力很小,这个扭转的角度会很小。怎样才能把这个角度测出来呢?卡文迪许在T形架上装了一面小镜子,用一束光射向镜子,经镜子反射后的光射向远处的刻度尺,当镜子与T形架一起发生一个很小的转动时,刻度尺上的光斑会发生较大的移动。这样,就起到一个化小为大的效果,通过测定光斑的移动,测定了T形架在放置大球前后扭转的角度,从而测定了此时大球对小球的引力。卡文迪许用此扭秤验证了牛顿万有引力定律,并测定出万有引力恒量G的数值。这个数值与近代用更加科学的方法测定的数值是非常接近的。

  卡文迪许测定的G值为6.754×10—11,现在公认的G值为6.67×10—11。需要注意的是,这个万有引力恒量是有单位的:它的单位应该是乘以两个质量的单位千克,再除以距离的单位米的平方后,得到力的单位牛顿,故应为Nm2/kg2

  板书:G=6.67×10—11Nm2/kg2

  由于万有引力恒量的数值非常小,所以一般质量的物体之间的万有引力是很小的,我们可以估算一下,两个质量50kg的同学相距0.5m时之间的万有引力有多大(可由学生回答:约6.67×10—7N),这么小的力我们是根本感觉不到的。只有质量很大的物体对一般物体的引力我们才能感觉到,如地球对我们的引力大致就是我们的重力,月球对海洋的引力导致了潮汐现象。而天体之间的引力由于星球的质量很大,又是非常惊人的:如太阳对地球的引力达3.56×1022N。

  五、课堂小结

  本节课我们学习了万有引力定律,了解了任何两个有质量的物体之间都存在着一种引力,这个引力正比于两个物体质量的乘积,反比于两个物体间的距离。其大小的决定式为:

  其中G为万有引力恒量:G=6.67×10—11Nm2/kg2

  另外,我们还了解了科学家分析物体、解决问题的方法和技巧,希望对我们今后分析问题、解决问题能够有所借鉴。

  六、说明

  1、设计思路:本节课由于内容限制,以教师讲授为主。为能够吸引学生,引课时设计了一些学生习以为常的但又没有细致思考过的问题。讲授过程中以物理学史为主线,让学生以科学家的角度分析、思考问题。力争抓住这节课的有利时机,渗透“没有绝对特殊的物体”这一引起物理学几次革命性突破的辩证唯物主义观点。

  2、卡文迪许扭秤模型为自制教具,可仿课本插图用金属杆等焊制,外面可用有机玻璃制成外壳,并可拆卸。

【高中物理万有引力定律教案】相关文章:

高中物理教案02-20

高中物理探究弹力与伸长量的关系教案08-26

【精华】高中物理《向心力的实例分析》的教案11-30

高中物理考试反思08-05

高中物理教学反思11-10

全国高中物理竞赛试题04-16

高中物理考试反思范文10-05

高中物理教学计划09-14

高中物理-高一物理教案物理教案-匀变速直线运动规律的应用01-02

高中物理考试反思(通用15篇)05-13