演讲稿

诺贝尔演讲稿

诺贝尔演讲稿 | 楼主 | 2017-08-06 20:48:37 共有3个回复 自我介绍 我要投稿
  1. 1诺贝尔演讲稿
  2. 21902诺贝尔奖获得者洛仑兹演讲稿
  3. 3奥巴马获诺贝尔和平奖的获奖感言 演讲稿(全文)

奥巴马获诺贝尔和平奖的获奖感言演讲稿全文,我知道最近几十天来有关我的获奖引起多方的质疑和争论,甚至有人认为这不过是给我下的一个圈套而已,在我获奖的翌日有一位来自中国的道长送了一本书给我道德经。

诺贝尔演讲稿2017-08-06 20:46:15 | #1楼回目录

University

of

California

at

Berkeley

graduation

speech

Thomas J. Sargent.

May 16, 2016

I rememberhowhappy Ifelt whenIgraduatedfromBerkeley manyyears

ago. But I thought the graduation speeches were long. I will economize on

words.

Economics is organized common sense. Here is a short list of valuable

lessons that our beautiful subject teaches.

1. Many things that are desirable are not feasible.

2. Individuals and communities face trade-offs.

3. Other people have more information about their abilities, their efforts,

and their preferences than you do.

4. Everyone respondstoincentives,includingpeopleyou wanttohelp. That

is why social safety nets don’t always end up working as intended.

5. There are tradeoffs between equality and efficiency.

6. In an equilibrium ofagame or an economy,people are satisfied withtheir

choices. That is why it is difficult for well meaning outsiders to change

things for better or worse.

7. In the future, you too will respond to incentives. That is why there are

somepromisesthatyou’dliketo makebut can’t. No one willbelievethose

promises because they know that later it will not be in your interest to

deliver. The lesson here is this: before you make a promise, think about

whetheryou will want tokeepitif and whenyour circumstances change.

Thisishowyou earn a reputation.

8. Governments and voters respond to incentives too.

That is why gove

rnments sometimes default on loans and other promises that they have

made.

. New

York

University

and

Hoover

Institution.

Email:

http://www.oh100.com .

1

9. Itis feasiblefor onegeneration to shift costs to subsequent ones. Thatis

what national government debts and the U.S. social security system do

(but not the socialsecurity system of Singapore).

10. When a government spends, its citizens eventually pay, either today or

tomorrow, either through explicit taxes or implicit ones like inflation.

11. Most people want other people to pay for public goods and government

transfers(especially transfers to

themselves).

12. Because market prices aggregate traders’ information, it is difficult to

forecast stock prices and interest rates and exchange rates.

2

1902诺贝尔奖获得者洛仑兹演讲稿2017-08-06 20:48:02 | #2楼回目录

Hendrik A. Lorentz – Nobel Lecture

Nobel Lecture, December 11, 1902

The Theory of Electrons and the Propagation of Light

When Professor Zeeman and I received the news of the great honour of the high distinction awarded to us, we immediately began to consider how we could best divide our roles with respect to our addresses. Professor Zeeman was first to have described the phenomenon discovered by him, given the explanation of it, and given an outline of his later experimental work. My task should have been to consider rather more deeply our present-day knowledge of electricity, in particular the so-called electron theory. I am more sorry than I can say that Professor Zeeman has been prevented by illnefrom undertaking the journey to Stockholm, and that therefore you will now only be able to hear the second half of our programme. I hope you will excuse me if under these circumstances I say only a little about the main theme, Zeeman's fine discovery. A short description of it, however, might well precede my further thoughts.

As is well known to you, Faraday even in his day discovered that magnetic forces can have an effect on the propagation of light. He showed in fact that in suitable conditions the vibrations of a beam of polarized light can be made to rotate by such forces. Many years later Kerr found that such a beam of light also undergoes similar changes when it is simply reflected from the polished pole of a magnet. However, it remained for Zeeman's talent to show that a magnetic field affects not only the propagation and

reflection of light but also the processes in which the beam of light originates, that is to say that the rays emitted by a light source assume different properties if this source is placed in the gap between a magnetic north and south pole. The difference is shown in the spectral resolution of the light, when one is working with the type of light source whose spectrum consists of single bright lines - that is, with a coloured flame, an electrical spark, or a Geissler tube. To have a specific case before your eyes, imagine that my hands are the two poles, only much closer together than I am holding them now, and that the light source is between these poles, that is to say in the space immediately in front of me. Now if the spectrum of the light which shines on a point directly opposite me is investigated, there can be observed, instead of a single spectral line such as can be seen under normal

circumstances, a three-fold line, or triplet, whose components admittedly are separated from each other by a very small distance. Since each position in the spectrum corresponds to a specific frequency of light, we can also say that instead of light of one frequency the source is, under the influence of the magnetic field, emitting light of three different frequencies. If the spectrum consists of more than one line, then you can imagine that each line is resolved into a triplet. I must, however, add that the situation is not always as simple as this, and many spectral lines resolve into more than three components.

Before turning to the theory, I should like to remark that thanks to the speedy publication of research and the consequent lively exchange of views between scientists much progremust be considered as the result of a great deal of joint effort. Since it is expected of me, I am going to talk principally of my own ideas and the way in which I have come to them. I do beg of you, however, not to lose sight of the fact that many other physicists, not all of whom I can name in this short space of time, have arrived at the same or very similar conclusions.

The theory of which I am going to give an account represents the physical world as consisting of three separate things, composed of three types of building material: first ordinary tangible or ponderable matter, second electrons, and third ether. I shall have very little to say about ponderable matter, but so much the more about ether and electrons. I hope it will not be too much for your patience.

As far as the ether - that bearer of light which fills the whole universe - is concerned, after Faraday's discovery which I have already mentioned and also independently of it, many attempts were made to exploit the ether in the theory of electricity also. Edlund went so far as to identify the electric fluid with the ether, ascribing to a positively charged body an exceof ether and to

a negatively charged one a deficiency of ether. He considered this medium as a liquid, subject to the Archimedean principle, and in this way succeeded in imputing all electrostatic effects to the mutual repulsion of particles of ether.

There was also a place in his theory for the electrodynamic attraction and repulsion between two metallic wires with electrical current flowing in them. Indeed, he formed a most remarkable conception of these effects. He explained them by the condition that the mutual repulsion of two particles of ether needs a certain time to be propagated from the one to the other; it was in fact an axiom with him that everything which occurs in Nature takes a certain length of time, however short this may be. This idea, which has been fully developed in our present-day views, is found also in the work of other older physicists. I need only mention Gauss, of whom we know that he did not follow this up only because he lacked a clear picture of the propagation. Such a picture, he wrote to Wilhelm Weber, would be the virtual keystone of a theory of electrodynamics.

The way pioneered by Edlund, in which the distinction between ether and electricity was completely swept aside, was incapable of leading to a satisfactory synthesis of optical and electrical phenomena. Lorenz at Copenhagen came nearer the goal. You know, however, that the true founders of our present views on this subject were Clerk Maxwell and Hertz. In that Maxwell developed further and constructed a basis for the ideas put forward by Faraday, he was the creator of the electromagnetic theory of light, which is undoubtedly well known to you in its broad outline. He taught us that light vibrations are changes of state of the same nature as electric currents. We can also say that electrical forces which change direction extremely rapidly - many billions of times a second - are present in every beam of light. If you imagine a tiny particle in the path of a sunbeam, something like the familiar dust motes in the air, only considerably smaller, and if you also imagine that this particle is electrically charged, then you must also suppose that it is set into a rapid quivering movement by the light vibrations.

Immediately after Maxwell I named Hertz, that great German physicist, who, if he had not been snatched from us too soon, would certainly have been among the very first of those whom your Academy would have considered in fulfilling your annual task. Who does not know the brilliant experiments by which he confirmed the conclusions that Maxwell had drawn from his equations ? Whoever has once seen these and learnt to understand and admire them can no longer be in any doubt that the features of the electromagnetic waves to be observed in them differ from light beams only in their greater wavelength.

The result of these and other investigations into the waves propagated in the ether culminate in the realization that there exists in Nature a whole range of electromagnetic waves, which, however different their wavelengths may be, are basically all of the same nature. Beginning with Hertz's "rays of electrical force", we next come to the shortest waves caused by electromagnetic apparatus and then, after jumping a gap, to the dark thermal rays. We traverse the spectrum far into the ultraviolet range, come acroanother gap, and may then put X-rays, as extremely short violent electromagnetic disturbances of the ether, at the end of the range. At the beginning of the range, even before the Hertzian waves, belong the waves used in wireletelegraphy, whose propagation was established last summer from the southwest tip of England to as far as the Gulf of Finland.

Although it was principally Hertz's experiments that turned the basic idea of Maxwell's theory into the common property of all scientists, it had been possible to start earlier with some optimism on the task of applying this theory to special problems in optics. We will begin with the simple phenomenon of the refraction of light. It has been known since the time of Huygens that this is connected with the unequal rate of propagation of the beams of light in different substances. How does it come about, however, that the speed of light in solid, liquid, and gaseous substances differs from its speed in the ether of empty space, so that it has its own value for each of these ponderable substances; and how can it be explained that these values, and hence also the refractive index, vary from one colour to another?

In dealing with these questions it appeared once more, as in many other cases, that much can be retained even from a theory which has had to be abandoned. In the older theory of undulation, which considered the ether as an elastic medium, there was already talk of tiny particles contained in ponderable substances which could be set in motion by light vibrations. The explanation of the chemical and heating action of light was sought in this transmission of motion, and a theory of colour dispersion had been based on the hypothesis that transparent substances, such as glaand water, also contained particles which were set into

co-vibration under the influence of a beam of light. A successor to Maxwell now has merely to translate this conception of co-vibrating particles into the language of the electromagnetic theory of light.

Now what must these particles be like if they can be moved by the pulsating electrical forces of a beam of light? The simplest and most obvious answer was: they must be electrically charged. Then they will behave in exactly the same way as the tiny charged dust motes that we spoke of before, except that the particles in glaand water must be represented, not as floating freely, but as being bound to certain equilibrium positions, about which they can vibrate.

This idea of small charged particles was otherwise by no means new; as long as 25 years ago the phenomena of electrolysis were being explained by ascribing positive charges to the metallic atoms in a solution of a salt, and negative charges to the other components of the salt molecule. This laid the foundation of modern electrochemistry, which was to develop so rapidly once Prof. Arrhenius had expressed the bold idea of progressive dissociation of the electrolyte with increasing dilution.

We will return to the propagation of light in ponderable matter. The covibrating particles must, we concluded, be electrically charged; so we can conveniently call them "electrons", the name that was introduced later by Johnstone Stoney. The exact manner in which this co-vibration takes place, and what reaction it has on the processes in the ether, could be investigated with the aid of the well-known laws of electromagnetism. The result consisted of formulae for the velocity of propagation and the refractive indices, in their dependence on the one hand on the vibration period - i.e. on the colour of the light - and on the other hand on the nature and number of the electrons.

You will forgive me if I do not quote the rather complicated equations, and only give some account of their significance. In the first place, as regards the dependence of the refractive index on vibration period - that is, colour dispersion: in the prismatic spectrum and in rainbows we see a demonstration of the fact that the electrons in glaand water possea certain mass; consequently they do not follow the vibrations of light of different colours with the same readiness.

Secondly, if attention is focussed on the influence of the greater or smaller number of particles in a certain space an equation can be found which puts us in a position to give the approximate change in the refractive index with increasing or decreasing density of the body - thus, for example, it is possible to calculate the refractive index of water vapour from that of water. This equation agrees fairly well with the results of experiments.

When I drew up these formulae I did not know that Lorenz at Copenhagen had already arrived at exactly the same result, even though he started from different viewpoints, independent of the electromagnetic theory of light. The equation has therefore often been referred to as the formula of Lorenz and Lorentz.

This formula is accompanied by another which makes it possible to deduce the refractive index of a chemical compound from its composition, admittedly only in rough approximation as was possible earlier with the aid of certain empirical formulae. The fact that such a connection between the refraction of light and the chemical composition does exist at all is of great

importance in the electromagnetic theory of light. It shows us that the power of refraction is not one of those properties of matter which are completely transformed by the action of chemical combination. The relative positions of, and type of bond between, the atoms are not of primary importance as concerns the speed of propagation in a compound. Only the number of atoms of carbon, hydrogen, etc. is of importance; each atom plays its part in the refraction of light, unaffected by the behaviour of the others. In the face of these results we find it hard to imagine that the forces which bind an electron to its equilibrium position and on the intensity of which depends the velocity of light are generated by a certain number of neighbouring atoms. We conclude rather that the electron, together with whatever it is bound to, has its place within a single atom; hence, electrons are smaller than atoms.

Permit me now to draw your attention to the ether. Since we learnt to consider this as the transmitter not only of optical but also of electromagnetic phenomena, the problem of its nature became more pressing than ever. Must we imagine the ether as an elastic medium of very low density, composed of atoms which are very small compared with ordinary ones? Is it perhaps an

incompressible, frictionlefluid, which moves in accordance with the equations of hydrodynamics, and in which therefore there may be various turbulent motions? Or must we think of it as a kind of jelly, half liquid, half solid?

Clearly, we should be nearer the answers to these questions if it were possible to experiment on the ether in the same way as on liquid or gaseous matter. If we could enclose a certain quantity of this medium in a vessel and compreit by the action of a piston, or let it flow into another vessel, we should already have achieved a great deal. That would mean displacing the ether by means of a body set in motion. Unfortunately, all the experiments undertaken on these lines have been unsuccessful; the ether always slips through our fingers. Imagine an ordinary barometer, which we tilt so that the mercury rises to the top, filling the tube completely. The ether which was originally above the mercury must be somewhere; it must have either passed through the glaor been absorbed into the metal, and that without any force that we can measure having acted upon it. Experiments of this type show that bodies of normal dimensions, as far as we can tell, are completely permeable to the ether. Does this apply equally to much larger bodies, or could we hope to displace the ether by means of some sort of very-large, very-fast moving piston? Fortunately, Nature performs this experiment on a large scale. After all, in its annual journey round the sun the earth travels through space at a speed more than a thousand times greater than that of an expretrain. We might expect that in these circumstances there would be an end to the immobility of the ether; the earth would push it away in front of itself, and the ether would flow to the rear of the planet, either along its surface or at a certain distance from it, so as to occupy the space which the earth has just vacated. Astronomical observation of the positions of the heavenly bodies gives a sharp means of determining whether this is in fact the case; movements of the ether would assuredly influence the course of the beams of light in some way. Once again we get a negative answer to our question whether the ether moves. The direction in which we observe a star certainly differs from the true direction as a result of the movement of the earth - this is the so-called aberration of light. However, by far the simplest explanation of this phenomenon is to assume that the whole earth is completely permeable to the ether and can move through it without dragging it at all. This hypothesis was first expressed by Fresnel and can hardly be contested at present. If we wish to give an account of the significance of this result, we have one more thing to consider. Thanks to the investigations of Van der Waals and other physicists, we know fairly accurately how great a part of the space occupied by a body is in fact filled by its molecules. In fairly dense substances this fraction is so large that we have difficulty in imagining the earth to be of such loose molecular structure that the ether can flow almost completely freely through the spaces between the molecules. Rather are we constrained to take the view that each individual molecule is permeable. The simplest thing is to suggest further that the same is true of each atom, and this leads us to the idea that an atom is in the last resort some sort of local modification of the omnipresent ether, a modification which can shift from place to place without the medium itself altering its position. Having reached this point, we can consider the ether as a substance of a completely distinctive nature, completely different from all ponderable matter. With regard to its inner constitution, in the present state of our knowledge it is very difficult for us to give an adequate picture of it.

I hardly need to mention that, quite apart from this question of constitution, it will always be important to come to a closer understanding of the transmission of apparent distant actions through the ether by demonstrating how a liquid, for example, can produce similar effects. Here I am thinking in particular of the experiments of Prof. Bjerknes in Christiania* on transmitted hydrodynamic forces and of his imitation of electrical phenomena with pulsating spheres.

I come now to an important question which is very closely connected with the immobility of the ether. You know that in the determination of the velocity of sound in the open air, the effect of the wind makes itself felt. If this is blowing towards the observer, the required quantity will increase with the wind speed, and with the wind in the opposite direction the figure will be reduced by the same amount. If, then, a moving transparent body, such as flowing water, carries along with it in its entirety the ether it contains, then optical phenomena should behave in much the same way as the acoustical phenomena in these

experiments. Consider for example the case in which water is flowing along a tube and a beam of light is propagated within this water in the direction of flow. If everything that is involved in the light vibrations is subject to the flowing movement, then the propagation of light in the flowing water will in relation to the latter behave in exactly the same way as in still water. The velocity

of propagation relative to the wall of the tube can be found by adding the velocity of propagation in the water to the rate of flow of the water, just as, if a ball is rolling along the deck of a ship in the direction in which it is travelling, the ball moves relative to an observer on the shore at the sum of two speeds - the speed of the ship and the speed at which the ball is rolling on it. According to this hypothesis the water would drag the light waves at the full rate of its own flow.

We come to a quite different conclusion if we assume, as we now must, that the ether contained in the flowing water is itself stationary. As the light is partly propagated through this ether, it is easy to see that the propagation of the light beams, for example to the right, must take place more slowly than it would if the ether itself were moving to the right. The waves are certainly carried along by the water, but only at a certain fraction of its rate of flow. Fresnel has already demonstrated the size of this fraction; it depends on the refractive index of the substance - the value for water, for example, being 0.44. By accepting this figure it is possible to explain various phenomena connected with aberration. Moreover, Fresnel deduced it from a theoretical standpoint which, however ingenious it may be, we can now no longer accept as valid.

In 1851 Fizeau settled the question by his famous experiment in which he compared the propagation of light in water flowing in the direction of the beam of light with its propagation in water flowing in the opposite direction. The result of these experiments, afterwards repeated with the same result by Michelson and Morley, was in complete agreement with the values assumed by Fresnel for the drag coefficient.

There now arose the question of whether it is possible to deduce this value from the new theory of light. To this end it was necessary first of all to develop a theory of electromagnetic phenomena in moving substances, with the assumption that the ether does not partake of their motion. To find a starting-point for such a theory, I once again had recourse to electrons. I was of the opinion that these must be permeable to the ether and that each must be the centre of an electric and also, when in motion, of a magnetic field. For conditions in the ether I introduced the equations which have been generally accepted since the work of Hertz and Heaviside. Finally I added certain assumptions about the force acting on an electron, as follows: this force is always due to the ether in the immediate vicinity of the electron and is therefore affected directly by the state of this ether and indirectly by the charge and velocity of the other electrons which have brought about this state. Furthermore, the force depends on the charge and speed of the particle which is being acted upon; these values determine as it were the sensitivity of the electron to the action due to the ether. In working out these ideas I used methods deriving from Maxwell and partly also relied on the work of Hertz. Thus I arrived at the drag coefficient accepted by Fresnel, and was able to explain in a fairly simple way most of the optical phenomena in moving bodies.

At the same time, a start was made on a general theory which ascribed all electromagnetic processes taking place in ponderable substances to electrons. In this theory an electrical charge is conceived as being a surplus of positive or negative electrons, but a current in a metallic wire is considered to be a genuine progression of these particles, to which is ascribed a certain mobility in conductors, whereas in non-conductors they are bound to certain equilibrium positions, about which, as has already been said, they can vibrate. In a certain sense this theory represents a return to the earlier idea that we were dealing with two electrical substances, except that now, in accordance with Maxwell's ideas, we have to do with actions which are transmitted through ether and are propagated from point to point at the velocity of light. Since the nature and manner of this transmission can be followed up in all its details, the demand that Gaumade for a theory of electrodynamics is fulfilled. I cannot spend any more time on these matters, but would like to mention that Wiechert at Gttingen and Larmor at Cambridge have produced very similar results, and that Prof. Poincaré has also contributed much to the development and evaluation of the theory.

I must also paover many phenomena investigated in recent years, in which the concept of electrons has proved a useful guide, in order not to stray too far from the theory of the Zeeman effect.

When Prof. Zeeman made his discovery, the electron theory was complete in its main features and in a position to interpret the new phenomenon. A man who has peopled the whole world with electrons and made them covibrate with light will not scruple to assume that it is also electrons which vibrate within the particles of an incandescent substance and bring about the emission of

light. An oscillating electron constitutes, as it were, a minute Hertzian vibrator; its effect on the surrounding ether is much the same as the effect we have when we take hold of the end of a stretched cord and set up the familiar motion waves in the rope by moving it to and fro. As for the force which causes a change in the vibrations in a magnetic field, this is basically the force, the manifestations of which were first observed by Oersted, when he discovered the effect of a current on a companeedle.

I will leave the explanation of triplets to Prof. Zeeman. I will confine myself to remarking that it is the negative electrons which oscillate, and that from the distance between the components into which the spectral line is resolved the ratio between the numerical value of the charge and the maof these particles can be deduced. The results are in gratifying agreement with those which have been found in other contexts. The same or similar values for the ratio mentioned above have been found for the negative particles with which we are concerned in cathode rays.

A noteworthy aspect is the enormous size of the charge of these particles compared with their mass. A numerical example will give you some idea of this. Imagine that we had two iron spheres, each with a radius of one metre, situated ten metres apart, and that we gave each of them a surplus of our negative electrons of such a size that the maof this surplus was the millionth part of a milligram. The spheres would then repel each other with a force equivalent to a weight of more than 80,000 kilograms and would therefore be able to reach a speed of many metres per second. I need hardly say that we are far from being able to make an experiment on this scale; we are not in a position to bring such a large number of electrons of one certain kind together on one body. If it were possible, we could carry out many interesting experiments which we can now only imagine. For instance, we could demonstrate the Zeeman effect on a simple pendulum. This can easily be made to swing in a circle, and if the bob is given an electrical charge the vertical component of the earth's magnetic field somewhat alters the period of rotation, which is increased in one direction and reduced in the other. With the charges which we have at our disposal this difference is completely imperceptible, and Prof. Zeeman himself would be unable to observe the Zeeman effect on a pendulum.

Let us now turn from the relative sizes of charge and mato their absolute values. We can at least give an estimate of these. If we combine the results to which Zeeman's experiments lead with those which can be deduced from the colour dispersion of gases, on the hypothesis that it is the same type of electrons which is under consideration in both cases, we come to the conclusion that the charge of an electron is of the same order of size as the charge of an electrolytic ion. The mass, however, is much smaller - about one eight-hundredth part of that of a hydrogen atom. J.J. Thomson at Cambridge has confirmed this result by a completely different method. At present we are not concerned with the exact value; the principal thing is that, as we have remarked before, the electron is very small compared with the atom. The latter is a composite structure, which can contain many electrons, some mobile, some fixed; perhaps it bears electrical charges which are not concentrated at single points but distributed in some other way.

Of the other magneto-optical phenomena I will only describe one in any greater detail. Soon after Zeeman had published his discovery the Russian physicists Egorov and Georgievsky found that a sodium flame situated between the poles of an

electromagnet emitted partially polarized light - i.e., in its beams vibrations in a certain direction were present with a greater intensity than vibrations in the direction perpendicular to this. To describe this phenomena to you more exactly and at the same time to make clear how it is to be explained, I ask you to imagine once more that my hands are opposing magnetic poles and that the sodium flame is placed between them. Now if you were exactly opposite me, you would observe that the vertical electrical vibrations have a greater intensity than the horizontal ones.

This is connected with the fact that the flame has a certain thickneand that the beams emitted by the back half are partly swallowed up again as they pathrough the front half. In accordance with a familiar rule, this absorption effect is strongest when all the incandescent particles in the flame are vibrating with the same period. It diminishes, and the flame therefore becomes brighter, as soon as this uniformity of the period of vibration is disturbed in any way. Now the magnetic field does this, in that instead of one common period of vibration it causes several to come into play. However, the increase in illuminating power brought about in this way is restricted to the vertical vibrations in the flame that we are imagining. The horizontal vibrations of

the electrons, from right to left and back again, are - it follows from the principles of the theory - not at all influenced by the magnetic field.

The conclusion therefore is that of the vibrations emitted only the vertical ones and not the horizontal ones are reinforced, which is the cause of the phenomenon we have observed.

I may add that this phenomenon is one of those magneto-optical effects which are most easily observed. The explanation given can also be put to the proof by the use of two flames instead of one, and an investigation of the absorption to which the light of the rear one is subject in the front one which has been situated between the magnetic poles.

Now that I have come to absorption, I must also consider the masterly and important theoretical considerations to which Prof. Voigt at Gttingen has been led by Zeeman's discovery. His theory differs from mine in that he always has in mind, not the emission of light, but its absorption. He explains the so-called inverse Zeeman effect - that is, the phenomenon that, when a strong white light is transmitted through the flame situated between the poles, instead of an absorption stripe we get a triplet of dark lines. On the basis of the parallelism between absorption and emission, it is possible to work back from this inverse phenomenon to the direct one.

Voigt does not refer to vibrating electrons ; he is content to add appropriately chosen new terms to the equations which represent propagation in an absorbent medium. This method throws into relief the connection between the Zeeman effect and the rotation of the direction of vibration which was discovered by Faraday, and has other advantages, namely when vapours of rather high density, with correspondingly wider spectral lines, are concerned. Professor Zeeman will be able to give you an example of the effects of Voigt's theory.

However, any one who sets himself the task of drawing conclusions about the nature of the vibrations of electrons from these observations will, I think, prefer to choose the emission from very rarefied gases as an object of study. Here the radiation from the single molecules or atoms, undimmed by their effects on each other, is mirrored by the sharp lines in the spectrum. I followed this course in my later research, but came acroconsiderable difficulties due to the fact that although the simple triplet

frequently appears, in many cases there is resolution into more than three lines. This is a stumblingblock in the way of the theory. At all events it is easy to draw some general rules about the state of polarization of the light beams corresponding to the different components - i.e., the shape and direction of their vibrations, but unfortunately I have hardly got any further.

As long as we have to deal only with resolution into three components, it is sufficient explanation to assume that each

incandescent atom contains a single electron which can vibrate round its equilibrium position in all directions in the same way. This simple theory however leaves us high and dry as soon as the spectral lines split into more than three components in the magnetic field. It is obvious then that we must imagine atoms of more complicated structure, which are provided with electrical charges, and the parts of which are capable of making small vibrations, rather like the parts of an elastic resonant body. When I investigated the theory of such movements, which can be done without much difficulty, it became evident that such an arbitrary system would in general show no Zeeman effect at all.

However, no mathematical theory is necessary to perceive this and to find the condition necessary to bring about such an effect. Imagine a light source which shows a Zeeman triplet under the influence of a magnetic field. The three lines naturally cannot appear unlethree types of vibration with slightly different periods are present in the particles of the light source. These periods however can only be different if the directions of movement or the shapes of the path in the three cases are not the same. We will say in short that we are dealing with three different vibration patterns, each with its own frequency, in the light source. We will now gradually reduce the intensity of the magnetic field and finally let it disappear. As long as even a weak field is present, the three lines persist, only they draw nearer each other; the three vibration patterns thus always exist, but their frequencies approach a common limiting value, the frequency of the unresolved spectral line. In this way we come to suppose that even when we observe the latter, the three patterns of movement still exist, though without distinguishing themselves from each other by their frequency as is the case in a magnetic field. It can be expressed thus: the spectral line is already three-fold before the

magnetic force comes into play, and this force has nothing else to do except, as it were, to push apart the three lines which originally coincided.

The same applies to a four-, five- or six-fold line, and you may rest assured that a spectral line will never resolve into six

components unless, before the magnetic field is set up, each incandescent particle can vibrate in six different ways, that is, with exactly the same frequency.

Herein lies one necessary condition which is not quite so easy to fulfil. I could add a second condition for the appearance of clear-cut components of the spectral lines, but the one I have described should suffice to show that in the further development of the theory we cannot give free rein to our imagination. Instead, we are fairly limited in the choice of hypotheses. A suitable model of a vibrating atom would be an elastic spherical shell with a uniformly distributed electrical charge, whose surface is divided by nodal lines into a greater or lesser number of fields vibrating in different directions. However, I will not linger over the phenomena which appear in such models, for I fear I might wander too far from reality along these paths.

I have tried to delineate in broad outline how much - or it would be better to say, how little - the electron theory has achieved in the explanation of the new magneto-optical phenomena. If I were now to give an account of the experimental work, it would become clear that the experiments have made more considerable advances. The research workers have already made a start on comparing the different spectral lines of a chemical element with each other, with respect to their magnetic resolution, and on investigating the connection between this resolution and the regular relationships existing in spectra.

In this country, where the father of my worthy colleague Angstrom, and Prof. Thalén have worked, and where Prof. Hasselberg continued his observations and measurements with indefatigable diligence, I hardly need to say how wonderful and rich a world these investigations into spectra have opened up to us. A world whose laws we are beginning to understand. It has become apparent that many line spectra are constructed according to a definite type; the lines are arranged in certain series, and in such a way that each series consists of lines which are distributed over the spectrum in accordance with a fairly simple law, and moreover there are relationships between the one series and the next. These relationships, in the clarification of which Prof. Rydberg and the German physicists Kayser and Runge have been particularly prominent, suggest a connection between the magnetic resolution of lines belonging to the same series. Such a connection has now in fact been confirmed. Runge and Paschen have found, in their investigation of the Zeeman effect in mercury, that all the lines of one series are resolved in exactly the same way.

I am convinced that the theory will only make significant progrewhen it also turns its attention not simply to one single spectral line but to all the lines of a chemical element. When once we succeed in building a theoretical foundation for the structure of spectra, then and not before then will we be able to grasp successfully the more complicated forms of the Zeeman effect. It would be better to say: in the future, research into the regular relationships in the spectra and into the Zeeman effect must go hand in hand; thus they will be able to lead some day to a theory of light emission, the achievement of which is one of the greatest aims of present-day physics.

The electron theory also presents an enormous field of study outside the realm of magneto-optical phenomena. For one thing, the free-moving electrons, with which we are concerned in cathode rays and in some types of Becquerel rays, give rise to many interesting problems. I will single out only the important question of the so-called apparent maof these particles. A definite magnetic field in the surrounding ether - and hence also a certain amount of energy in this medium - are inextricably connected with every movement of an electron; we can therefore never set an electron in motion without simultaneously imparting energy to the ether. To do this a great amount of work is necessary, and we must employ a greater force than if it were not necessary to set up this magnetic field. Calculation shows that the force required is the same as would be needed if the mawere

somewhat greater than it is in reality. In other words, if we determine the main the usual way from the phenomena, we get the true maincreased by an amount which we can call the apparent, or electromagnetic, mass. The two together form the effective mawhich determines the phenomena.

Now the investigations published by Kaufmann and Abraham in the past year have shown that the apparent mais by no means to be discounted. It certainly forms a considerable part of the effective mass, and there is a possibility that in the end we shall have to ascribe apparent maonly and never true maat all to electrons.

The peculiar thing about this apparent mais, moreover, that it is not constant, but depends on the velocity; consequently the study of the motion of the electron differs in many ways from ordinary dynamics.

It is hard to say if it will ever be possible to examine further with any succethe question of the nature of an electron, which the research I have mentioned has already touched on. Meanwhile, even without ascertaining this, we can continue to test the basic assumptions of the theory in practice, and to draw from the properties of ponderable matter conclusions about the electrons it contains. The conductivity of electricity and heat by metals, thermoelectricity, permanent and temporary magnets, heat radiation and absorption, the optical, electrical and magnetic properties of crystals - all these aspects promise us a rich harvest. And even farther fields are opening up to our view. If it is true, as had been concluded from optical experiments, that the dimensions of a ponderable body undergo a slight alteration as soon as it moves through the motionleether, we must conclude that molecular forces are transmitted through the ether in a way similar to electrical effects, and that leads to the idea that these forces are basically of an electromagnetic nature and the material particles among which they exist are composed of electrons - or, at least, the electrical charges of these particles are not something accidental but something very significant, also where molecular forces are concerned.

Thus we hope that the electron hypothesis, as it is being taken up in widely different sectors of physics, will lead to a general theory embracing many aspects of physics and also of chemistry. Perhaps it will be itself completely transformed on the long journey; however, there can hardly be any doubt that our hypotheses about the connection of widely differing phenomena with electromagnetism will prove correct, and that hence, in so far as it relates to the nature of ponderable matter, that general theory will be an electrochemical one, as Berzelius already dimly foresaw and as he tried to demonstrate with the resources at his disposal.

This is admittedly a prospect of the distant future, and the individual scientist can scarcely hope to make any significant

contribution to its achievement. As far as I am concerned, I would count myself fortunate if it fell to me, encouraged and spurred on as I am by the high distinction awarded to me by your Academy, to play a modest part in the solution of the problems which next present themselves to us.

I close with the warmest thanks for the attention with which you have listened to me.

奥巴马获诺贝尔和平奖的获奖感言 演讲稿(全文)2017-08-06 20:46:25 | #3楼回目录

奥巴马获诺贝尔和平奖的获奖感言 演讲稿(全文)

时间:2016年12月10日

演讲者:奥巴马

撰稿者:陈罗祥

尊敬的诺贝尔委员会,大家好!

10月9日清晨,我接到了白宫发言人吉布斯的来电,获悉贵委员会决定,将本年度的诺贝尔和平奖颁发给我。

我感到十分荣幸,在此,我非常感谢诺贝尔委员会对我的褒奖、信任和支持。

我知道,不仅仅是我赢得了一个奖项,这同样也是全体美国民众的胜利!

我知道,最近几十天来,有关我的获奖,引起多方的质疑和争论。赞成者认为,我在削减核武器、解决核问题争端、应对气候变化、支持―多伙伴世界‖等一系列全球性问题上的多次许诺和积极努力,是获奖的关键元素。反对者认为,做出颁奖给我的这一决定过早也过于草率,因为我就任美国总统,毕竟只有短短几个月的时间,需要假以时日。还有人认为,我的获奖仅仅是因为―明星力量‖而非有意义的成就;我之能够获奖也仅仅因为我是美国有史以来的第一位黑人总统。更有人认为,与其说把奖项颁给我是对我成绩的肯定,不如说是他们投给我的政府未来的―信任投票‖。甚至,有人认为,这不过是给我下的一个圈套而已。

我知道,我陷入了一个两难的境地:我的面前,是尊敬的诺贝尔委员会,我的身后,是广大的美国民众,我的左边和右边,是两种截然不同的意见,和一些叽叽喳喳的喧哗。这时,我听到一个清晰的声音,穿越了时空,静静地传来……

我知道,在遥远的中国,有一种宗教,叫道教;我知道,在五千年前的东方,有一个圣人叫老子。在我获奖的翌日,有一位来自中国的道长,送了一本书给我:《道德经》。

我知道,这是中国传统文化的经典之一。我打开了书,于是那些智慧的声音在我耳边响起:道可道,非常道;名可名,非常名……

于是,我明白了——

我知道,我信仰上帝,但我从不排斥,世界上任何一种智慧的声音。我不会排斥,美国大众不会排斥,世界各国人民都不会排斥。

我知道,在我之前,1906年罗斯福总统、1919年威尔逊总统都曾在任上获得诺贝尔和平奖。我并不认为我能与那些杰出前辈相提并论。

我知道,我的任上,还有下述这些或那些问题:

我知道,当今世界上,―准核国家‖数量似乎正不减反增;

我知道,英巴的核武器好像已经被世界遗忘,而处理朝核、伊核问题也无进展; 我知道,我们确实是在开始从伊拉克撤军,但阿富汗呢?恐怕未来还要不断增兵; 我知道,应对―气候变化‖,我们作的承诺究竟能否兑现,也是一个问题。 我知道,古老中国还有一句名言:任重道远。

……

我知道,在今天这个特殊的日子和场合,面对尊敬的的诺贝尔委员会,我必须尽可能婉转地表达我对授予我诺贝尔和平奖的感激之情和谢绝之意。

我知道,我心里深深隐藏着对在座各位的抱歉。这里,我再一次深切地表达我的感激和歉意。

我知道,我这样做,是因为深知我面前任务的艰难。我们正面临平生最大的挑战——两场战争,一个处于危险边缘的星球、一个本世纪以来最严重的金融危机。

我知道,对于那些在其它国度关注美国和我的人们,从国会到王宫、到在被世界遗忘的角落摆弄收音机的人们,我要说:我们的经历或许各有不同,但是目标是共同的,一个新的黎明已经到来。

感谢大家,上帝保佑你们,上帝保佑美利坚!

奥巴马获诺贝尔和平奖的获奖感言 英文原稿:

Well, this is not how I expected to wake up this morning. After I received the news, Malia walked in and said, "Daddy, you won the Nobel Peace Prize, and it is Bo's birthday!" And then Sasha added: "Plus, we have a three-day weekend coming up." So it's good to have kids to keep things in perspective.

I am both surprised and deeply humbled by the decision of the Nobel Committee. Let me be clear: I do not view it as a recognition of my own accomplishments, but rather as an affirmation of American leadership on behalf of aspirations held by people in all nations.

To be honest, I do not feel that I deserve to be in the company of so many of the transformative figures who have been honoured by this prize – men and women who have inspired me and inspired the entire world through their courageous pursuit of peace.

But I also know that this prize reflects the kind of world that those men and women, and all Americans, want to build – a world that gives life to the promise of our founding documents. And I know that, throughout history, the Nobel Peace Prize has not just been used to honour specific achievement; it's also been used as a means to give momentum to a set of causes. And that is why I will accept this

award as a call to action – a call for all nations to confront the common challenges of the 21st-century.

These challenges can't be met by any one leader or any one nation. And that's why my administration has worked to establish a new era of engagement in which all nations must take responsibility for the world we seek…

Some of the work confronting us will not be completed during my presidency. Some, like the elimination of nuclear weapons, may not be completed in my lifetime. But I know these challenges can be met so long as it's recognised that they will not be met by one person or one nation alone. This award is not simply about the efforts of my administration – it's about the courageous efforts of people around the world.

And that's why this award must be shared with everyone who strives for justice and dignity – for the young woman who marches silently in the streets on behalf of her right to be heard even in the face of beatings and bullets; for the leader imprisoned in her own home because she refuses to abandon her commitment to democracy; for the soldier who sacrificed through tour after tour of duty on behalf of someone half a world away; and for all those men and women acrothe world who sacrifice their safety and their freedom and sometimes their lives for the cause of peace.

That has always been the cause of America. That's why the world has always looked to America. And that's why I believe America will continue to lead. Thank you very much.

【应届毕业生面试自我介绍汇编15篇】相关文章:

应届毕业生面试自我介绍范文汇编6篇01-04

应届毕业生面试自我介绍集锦15篇01-06

本科应届毕业生面试自我介绍6篇02-14

应届毕业生面试自我介绍范文九篇12-11

应届毕业生面试自我介绍范文合集7篇12-12

应届毕业生面试时的自我介绍范文09-03

关于应届毕业生面试自我介绍模板合集6篇01-09

应届毕业生面试自我介绍范文汇总八篇01-15

应届毕业生面试自我介绍范文集合六篇01-11

关于应届毕业生面试自我介绍范文合集6篇01-08